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CHAPTER I

INTRODUCTION

1.1 Introduction

The Lebesgue decomposition of measures induced by stochastic processes is
important in areas such as statistical inference and information theory.

For Gaussian processes the Lebesgue decomposition has been fully described and
the following dichotomy prevails: two Gaussian processes are either mutually absolutely
continuous, or else they are singular (see, e.g. Chatterji and Mandrekar (1978)). In the
former case expressions for the Radon-Nikodym derivative are known and the
discrimination of the two Gaussian processes is based on a threshold test on the log of
their likelihood ratio. In the latter case they can in principle be discriminated with
probability one. Some partial results are also available for other processes having finite
second moment (Fortet (1973)).

The Central Limit Theorem and the stability property provide the basic reasons for
regarding stable processes as a natural generalization of Gaussian processes. Most of the
work on stable processes focuses on contrasts and similarities between Gaussian and
non-(Gaussian stable processes. While the problem of Lebesgue decomposition of
measures induced by Gaussian processes is the simplest and most thoroughly studied for
non-Gaussian stable processes the problem has remained largely open.

This work investigates mainly the Lebesgue decomposition of measures induced by
non-Gaussian stable processes. For non-Gaussian measures, this question seems to have
been first studied by Gihman and Skorohod (1966) and Skorohod (1965) for infinitely

divisible measures in Hilbert space, and subsequently by Briggs (1975), Veeh (1931). and
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Brockett (1984) for measures induced by infinitely divisible processes. Except for the
first work no application of the results to non-Gaussian stable measures has been made.
The only works dealing specifically with stable measures are Zinn (1975) and Thang and
Tien (1980).

Sufficient conditions for an element to be an admissible translate of an infinitely
divisible measure in a Hilbert space were obtained in Gihman and Skorohod (1966).
However, as observed by Zinn (1975), these conditions are difficult to verify and, as
simplified for stable measures, they were found to be false.

Zinn (1976), investigated the structure of the set of admissible translates of stable
measures in a Hilbert space. As an application he showed that certain stable processes
have no nontrivial admissible translates. The admissible translates of symmetric stable
measures with discrete spectral measures in a Banach space were characterized by
Thang and Tien (1980).

All these works use primarily the representation of the characteristic functional of a
stable measure in Hilbert or Banach space. Here we work with stable processes and
exploit their spectral representation, which in some cases allows the formulation of the
problem in terms of processes with independent increments and/or sequences of

independent random variables.

1.2 Summary

The next section of this chapter (1.3) introduces the setting and notation. and
presents the basic definitions and results on stable processes.

Chapter II considers the Lebesgue decomposition between the measure induced by a
stochastic process and its translates by a nonrandom function, i.e. the problem of

th order

detecting a nonrandom signal in additive random noise. In Section 2.1, for p
and symmetric stable processes a function space is introduced which plays a role partly

analogous to the reproducing kernel Hilbert space of a Gaussian or second order process.
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In particular this space provides an upper bound for the set of admissible translates, is a
stochastic processes version of a space introduced by Zinn (1975), page 249, and extends
the results of Zinn (1975), Proposition 10, to general symmetric stable processes and the
results of Fortet (1973), Théoréme 4.1, to general pth order processes. A lower bound

for the set of admissible translates of a stable process is also provided by exploiting their

structure as mixtures of Gaussian processes, and a dichotomy is shown for a class of

stable processes which includes all sub-Gaussian and sub-Gaussian-like processes. .:
In Section 2 of Chapter II, stable processes with an invertible spectral ;
representation are considered. Their admissible translates are characterized. and a i
.\

dichotomy is established: each translate is either admissible or singular. The result is :-.

\} '}

applied to show that most continuous time moving averages, and all harmonizable

’)'i"

processes with nonatomic spectral measure have no admissible translate. Thus these

e,

A

processes do not provide realistic models for additive noise, as every nonrandom signal -
‘.

. . . . ..

can be perfectly detected in their presence. General harmonizable processes and discrete -
. . . . . >
time mixed autoregressive moving averages processes are also considered. -

-
T

Section 3, Chapter II, comments on the Radon-Nikodym derivatives in the case of “,

-

an admissible translate and provides an expression for the likelihood ratio in terms of the >
)

one dimensional stable density in the case of purely atomic control measures. o

Chapter Il considers the Lebesgue decomposition between two measures induced A

’ﬂ

o

o

by certain non-Gaussian processes. In Section 3.1 equivalence and singularity of product

-

measures are studied. An idea of LeCam (1970) is developed further and provides a o
S

N oo . . . . “

necessary and sufficient condition for equivalence and for singularity of certain product N

. measures. As an application, the resuits of Steele (1986) on the discrimination between
a sequence of random vectors in RX and its perturbation by rigid motions, are extended
to more general classes of perturbations: and for certain non-symmetric (skewed) stable
sequences of independent random variables, necessary and sufficient conditions are given

for equivalence and for singularity. The singularity between sequences of independent
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symmetric stable random variables with different indexes of stability is also proved.

h

Section 2 of Chapter III, introduces the notion of domination between p'® order
processes. A necessary condition for equivalence of two Gaussian processes, namely the
setwise equality of their reproducing kernel Hilbert spaces, is shown to be true for
symmetric stable proresses with the function space introduced in Chapter Il replacing
the reproducing kernel Hilbert space. Further, for pth order processes with 1 < p < 2,
necessary conditions for absolute contintuity and sufficient conditions for singularity are
presented analogous to those of Fortet (1973) for second order processes.

Finally, Section 3 of Chapter III makes use of the results of Section 3.1 to show
that a dichotomy holds for certain symmetric stable processes including independentiy
scattered random measures and harmonizable processes. Necessary and sufficient

conditions for equivalence and singularity are given. The singularity between an

invertible symmetric stable process and its multiples is also proved.

1.3 Background and notation

The following setting is considered. X = (X(t) = X(tw):t € T) is a stochastic
process on a probability space (2, F,P) with parameter set T and real or complex

values, i.e. values in X = R or C. When X(t) € Lp(Q,%,P) = Lp(P) forallt € T, and

h th

some p > 0, X is called a pt order process. The iinear space L(X) of a p "~ order
process X is the Lp(P) completion of the set of finite linear combinations of its random
variables I(X) 8 sp{X(t);t € T}. X T denotes the set of all extended X-valued (i.e.. real
or complex valued} functionson T, € = C(RT) the o-field generated by the cylinder sets

of XV and py the distribution of the process X, i.e. the probability induced on € by X:
px (C) = P({w; X(-w) € C}), CeC.

For two stochastic processes X and Y we are interested in the Lebesgue
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decomposition of the distribution By of Y with respect to the distribution py of X. and

in particular in conditions for By and px to be singular (uY 4 "‘X)' and for by to be
absolutely continuous with respect uy (“Y < ux). If the two measures by and By
are mutually absolutely continuous we say that they are equivalent (By ~ Bx)- Oof
particular interest is the case where Y = s + X for a nonrandom function s on T. The
function s is then called a singular or admissible translate of X if BsiX L puy or

st X < By respectively.

Here we focus primarily on symmetric a-stable (SaS) processes. A real random
variable X is Sa8, 0 < a < 2, with scale parameter ||X]|o € (0,00) if E{exp(iuX)} =
exp{—l]Xllglu]a}. A real random vector (X,,...,Xy) is SaS (or its components are
jointly SaS) if all linear combinations Eﬂzlakxk are SaS. Similarly a real stochastic
process X = (X(t); t € T) is SaS if all linear combinations E{z___lanX(tk) are SaS
random variables. When o = 2 we have zero mean Gaussian random variables, vectors
and processes respectively. When 0 < a < 2, the tails of the distributions are heavier

and only moments of order p € (0,a) are finite with

(E(XIPRYP = ¢ allXlla,

h

where the constant Cp o is independent of X. Thus a SaS process X is pt order for all

0 < p < a. and its linear space £(X) does not depend on p and is the completion of {(X)

1}3/\0‘, which in fact metrizes convergence in probability (Schilder

with respect to ||-|
(1970)).

An important class of SaS processes consists of SaS independently scattered
random measures, which extend the concept of a stochastic process with independent
increments to more general parameter spaces. Let | be an arbitrary set and J a é-ring of

subsets of | with the property that there exists an increasing sequence (Ig; n € N) in J

with Unly = §. A real stochastic process Z = (Z(A): A € J) is called an independently

s
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3 “
j scattered SaS random measure if for every sequence (Ap; n € N) of disjoint sets in 3, the o
, random variables {Z(Ap); n € N} are independent, and whenever UnAp € 3 then ;'

;. Z(UpA,) = EHZ(AH) a.s., and for every A € J, Z(A) is a SaS random variable, i.e. -
;: E{exp(iuZ(A))} = exp{—m(A)|u|*} where m(A) = ||Z(A)||z. Then m is a measure on .;
N S
R 3 which extends uniquely to a o-finite measure on o(3), and is called the control
4 measures of Z. Conversely, the existence of an independently scattered SaS random N,
7 measure with a given control measure is a consequence of Komogorov’s consistency : :
b 3
theorem.
F
K When I is an interval of the real line, there is an identification between independent :w.
3 -&
!
l'. increments processes and independently scattered random measures. Namely if "‘
$ N
P
) X = (X(t), t € }) is an independent increments process and (a,b) C I: an interval, <
" Z((a,b]) a X(b) — X(a) can be extended to an independently scattered random measure N
I)‘
M on the é-ring J of bounded Borel sets of . Conversely given an independently scattered »
o
-
random measure Z on 3, and a in §, X(t) = sign(t—a)Z((aAt,aVt]),t € I, is an . i
. independent increments process. When the control measure m is Lebesgue measure, .
-
. then X has stationary independent increments, E{exp (iu[X(t) ~ X(t')])} = b
-4 .f!
; exp { — |t — t/| |u|a}, and is called SaS motion on L -":
For any function f € L4(l,0(3),m) = La(m) the stochastic integral f.de can be :.,-“
X defined in the usual way and is a SaS random variable with ||flde||a = |lt"||L (m)’ _:
a Y
L ]
: ")
’ The stochastic integral map f — flde from La(m) into £(Z) is an isometry and -
b
-
> "’:-
(1.3.1) L(Z) = {ffdZ; f € Lo(m)}. N
: o
4
Y The stochastic integral allows for the construction of SaS processes with generally '\j
)

: .
! dependent values by means of the spectral representation ‘-
.' A

;\-

(1.3.2) X(t) = f“f(t.u)Z(du). teT, f_;:‘:
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where {f(t,"); t € T} C Lg(m). In fact every SaS process X has such a spectral

representation in law, in the sense that for some family {f(t, ), t € T} in some Lq(m),
(1.3.3)  (X(t)yteT) L(fiuz@uniteT)

(see e.g., Kuelbs (1973) and Hardin (1982)). If £(X) is separable, e.g. X is continuous in
probability, then L, (l,m) can be chosen as Ly([0,1],Leb). Specific examples of SaS
processes will be considered in the following sections.

The covariation [X,Y]4 of two jointly SaS random variables X and Y with

1 < a < 2 is defined by

[X.Y]e _ E(XY<P71>)

Ivis — EqY”R)

(1.3.4)

<9> = IYIq—ly, q > 0 (see e.g. Cambanis and

which holds for all 0 < p < a, where y
Miamee (1985)). It follows that [[XHg = [X,X]q. If X and Y have representations

. <a-—1>
fude and fﬂgdZ respectively then [X,Y]y = flfg dm.

In certain cases, such as when working with Fourier transforms, it is more natural
and convenient to work with complex valued processes. A complex SaS random variable
is defined as having jointly SaS real and imaginary parts. Except for the representation
of the characteristic function, all concepts and results considered in this section for real

SaS random variables and processes extend to the complex case (see e.g. Cambanis

(1982) and Cambanis and Miamee (1985)).
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B ADMISSIBLE AND SINGULAR TRANSLATES - "
4 )
4 2.1 An upper bound for the set of admissible translates =9
A space of functions associated with a pth order, 0 < p < 2, stochastic process will '
be introduced and seen as a partial extension of the reproducing kernel Hilbert space ".L
Ry
A (RKHS) associated with a second order process. We concentrate only on pth order ;::
o
~
processes with p < 2 because for those with p > 2 the second order theory is applicable. X
Recall that for a second order stochastic process X = (X(t); t € T) with arbitrary ‘j-
NS
3 index set T, zero mean and covariance function R, the RKHS H of X (or of R) consists :ﬁ
» ) .|
3 of all functions s of the form s(t) = E(X(t)Y),t € T, Y € &£(X). If s(t) = E(X(t)?i) )
K then <sy,8>p = E(Y172) defines an inner product and R is a reproducing kernel, i.e. :-.:‘
forall t € T, R(-.t) € H and s(t) = <s,R(-,t)>y. Alsos € H if and only if e
"':._-.
sl |y 2ns(t)] B
slly = su 00 .
H P 172 ’ x
. EITN_ janX(tn)I?]L/
N
\:_
where the supremum is taken over all N € N, aps-ay € X and bty € T (see e.g. ;-»\
=
Fortet (1973)). oy
We now introduce the function space of a pth order process with 0 < p < 2 and '::'
arbitrary index T, and present its properties. T
~
-~
s
Definition 2.2.1. The function space F = F(X) of a pth order process :f.
)
Fo

X = (X(t);t € T) with 0 < p < 2is the set of all functions son T such that -




‘." ‘e, A0t W W M a % e My - At Y ™ e oy ~ W U -
()
‘ n
a ¥
.. :
, &
j N ’ ¢
: A 12— 2ns(tn)l >
Isllp: & sup—=2 7 < ,
; EISN_ anX(tn)P] :
i '
:: : where the supremum is taken over all N € N, ap,..ayn € X and tysenstn € T. ,
2.
i >
‘ ]
A .

When 1 < p <€ 2, a representation is known for the bounded linear functionals on

.‘
25

:" the linear space of X, analogous to the Riesz representation for bounded linear
g: functionals on a Hilbert space. This allows us to express the functions in F in terms of :
o ol

' moments of the process X. This and further properties of the function space are Y
;'.: collected in the following X
)

e, A
1 St
) "
b

Proposition 2.1.2. Let X = (X(t);t € T) be a pth order process with 1 < p < 2. Then ~'
) :

' the following three statements are equivalent: :
» N
1 l) s € F, b".
& .
g - i) s(t) = EXOYPTIY) for Y € £(X), oy
- )

8 . -
i i)  s(t) = E(X(t)W) for W e Lp*(P) where 1/p+1/p* = 1. .Q
P} (%,
_"" Moreover the following properties hold. ! :

p-1 <p—1> ]

) lsllp = Yliyepy i s(8) = EX®YPT7), Y € £(X). £

. <p—1> . %

) b) For each s € F, with s(t}) = E(X(t)Y ), Y € L(X), there exists a ]
unique W € L _,(P) (namely W = Y<p_1>) satisfying iii) and [{sl{ = [[WII . ::

, p* F L +(P) )

' c) (F,Illlu_.) is a Banach space isometrically isomorphic to the quotient space 2

. ]
o Lp*(P)/l(X)‘L, where I(X)'L denotes the annihilator of I(X). ;
‘ .'!

: o

] L%t

Proof: i) = ii) follows by observing that if HsHF < oo, then N
)

X ws(Z;\f_lanX(tn)) = Zg_lans(tn) defines a bounded linear functional on L(X) with ',j

: norm ”S”F. From Cambanis and Miller (1981). Proposition 2.1, there exists a unique Y _:
™, v <p—1> _ p—~1 <

. € L(X) such that y4(-) = E(-Y ) and ”wS“L(X)* = ”Y“LP(P)' Thus ¥
" 1 :

: s(t) = ws(X(t)) = E(X(t)Y SPT 7). )
&

. .
~ L]

' "-
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1, ~
5 ~
,L.
’ 10 ;
N A o _ y<p—1> 3
; ii) = iii) If Y € 2(X) then W = Y*P € Ly«(P) and ”W”Lp*(P) = ;
Y p= <p—-1> o ’z
IYIlL,(p)- Also s(t) = E(X(t)Y <P ) = E(X(t)W). 4
4
: iii) = i) If s(t) = E(X(t)W) then it is clear from its definition that ||s||g is ";
finite. .
s: p— '
N a) That [|sllg = ”Y“LP(P) follows as in the proof of i) = ii).
) b) Let s € F. By iii) there exist Z € Lp.(P) such that s(t) = E(X(t)Z). Let <
~ -
N (X)L be the closed linear space o
< 2
t
Y/ {Z' € Lpu(Q); E(Z'Y) = 0, Y € (X)}, o
J o
N 1‘.
» N X
pt and let Z; be the best approximation of X in {(X)~ i.e. ‘
; R
=1 A 4 it
Z-7Z = inf{{|Z2-2' i Z X .
§ 12-Zall, (py = infIZ-Zlp (pyi 2 € 04 3
j 8‘
]

Such a Z4 € I(X)l exists and is unique (Singer (1970), Corollary 3.5 and Theorem

™
»

& '..
. 1.11). Set W = Z—2Z,. Then E(ZY) = E(WY) for all Y € {(X). If Z’ is such that -4
4 E(2'Y) = E(ZY) for all Y € I(X), then Z—Z' € {(X)* and r
o~
A -
) w = ||Z2-2Z < ||Z—(2~-7Z’ = ||Z' . )
| ” ”Lp*(p) “ Olle*(p) = ” ( )“Lp*(p) H ”Lp*(p) :
: u-:
— \
: Thus if s(t) = E(X(t)W'), W' € Lp«(P), and |lsllg = ”W,”Lp*(P) we must have E
[}
N r ' | T
- HW ”Lp*(P) < |IW ”Lp*(P)' On the other hand ::
: X
N )
|E(3._;anX(tn)W)|
. Wl opy = llsllg = sup- =g 2= < IWil, ), (py N
. p “anlan (tn)”Lp(p) .::
'f Therefore ”W”Lp,(P) = ”W,”Lp*(P) = ||s|l[p. PuttingV = Z-W' we have é"‘
, V e (X)1 and -
: ‘:’
N &
*.
U
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”Z—Z‘)”Lp*(P) = ”W”Lp*(P) = ”W'“Lp*(P) = “Z_v”Lp*(P)'

- ®

W CE

Thus the u.icity of Z, implies W = W'. Since Y<p~l>€ Lp«(P) and

‘_'v' “x ‘

<p—-1> <p-1>

lsllg = “Y“I<,:*—(-Ii)> for s(t) = E(X(t)Y ) we must have W = Y

1 4
.

! c) That (F,||-Ilg) is a normed linear space is clear. To show that F is

AR
Cae
L

isometrically isomorphic to Lp*(P)/l(X)J', let s, € Fji = 1,2,

PR
.’{.:‘.I 7

7

A A K K W

s;(t) = E(X(t)V_Vi), and  (s;+s5)(t) = E(X(t)W),

o W

- >
"
L ax

107

where W,,W, and W are the unique elements in Lpx (P} such that

eyt

“S,'”F = ”Wi“Lp*(P)’ and ”31'*'32”[.' = HW”LP*(P)'

[ il
L

Since

~

E(X(t)W) = (s;+59)(t) = E(X(t)(W; +W,))

>
’,\."‘x'i'l

1’!._

we have W= (W +W,) € (X)L i.e. [W] = [W+W,] = [W]+[W,], where [ - ]

K

-

denotes an equivalen‘ce class in L *(P)/I(X)l. Similarly if s(t) = E(X(t)W) and

.«
s -ty

p
(as)(t) = E(X(t)W) we have (W] = [aW] = a[W]. Hence the map s — [W] is linear

X5 %

and since

TS A® S A
oo

i W = {|W =||s
i ]“LP*(P)/I(X)L I ”Lp*(P) llslig

[#

»

it is an isometric isomorphism.

- f. .-".-.' ‘f”
g 13

« o

L A

e % .
.

To finish the proof of ¢) we need to show that F is complete. Let (sk; k € N) be a

oo
Y

sequence in F such that "7 {[s, || <o and let W, € Ly.(P) be such that
k=1""k'F k p

7,

<"
o]

nwkuLp*(P) = s llp. Hence zi":lu\vkan*(p)<oo and W = gk“;lwk € LF,(P).
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Set s(t) = E(X(t)W). Thus

K K N
125___1%(21(___151(—5)('3n)|$||2k=1wk—W||Lp*(p)||Zn=1anx(tn)||Lp(p)

and

K -
N sk —sllg < ”“k 1wk—w“Lp*(P) — 0 as K — oo,
i.e. Eio_lsn € F proving that F is complete. 0

Further properties of the function space F of the process X, for 1 < p < 2,
analogous to those of a RKHS are the following:
i) If T is a metric space, functions in F are as ”smooth” as the process X is in
the weak sense, i.e., they are continuous (differentiable) if and only if X is weakly
continuous (differentiable).
ii) Norm convergence in F implies pointwise convergency, and the convergence is -
uniform if ||X(t)||Lp(P) is uniformly bounded.

th order for each p € (1,a)

If the process X is SaS with 1 < o < 2, thenitisof p
and its function space F does not depend on p but only on « and can be defined by

means of moments. Furthermore the functions in F can be expressed in terms of the

spectral representation of the process.

Corollary 2.1.3. Let X = (X(t);t € T) be a SaS process with 1 < a < 2 and spectral
representation
X(t) = flf(t,u)Z(du), teT, .

where Z has control measure m. Then the following three statements are equivalent

t‘f{

i) s € F,

i) s(t) = [X(t).Y]q for Y € L(X),

i)  s(t) = flf(t.u)i(u)m(du) forz € La*(m) where 1/a*+1/a = 1
e N B S B L i e R S B s SR e
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Moreover the following properties hold.

N
l}:n 111 n)’ ” ”a 1‘

a) slg = Cp,asu p”Z anX tn)lla

f‘ - b) For each s € F there exists a unique z € La*(m) satisfying iii) and ]ls]lﬂ_— =

; ”Z”L «(m)’ .;

N c) The map s — [z] from F into La*(m)/l(f)‘L, where [ - ] is an equivalence
N

class in La*(m)/l(f)‘l‘, I(f) = sp{f(t,-); t € T}, is an isometric isomorphism.

i) & ii). It follows from 1.3.3 that for all p € (1,a),

-

[ad

; - )
e [ Yla = B( - 2<P71), N
0 ’
; ’
o where N
% ~p/(p=1) | (a=p)/(p=1) P=l oo liye-t 3
y Z =Cp,a 1Yl Y and ||ZHLp(p) = Cp,all Yl ™" i
i
; 4
S I ‘.
so that s € F if and only if s(t) = [X(t),Y]q which does not depend on p. .

[s .
ii) & iii). If Y € £(X) then Y = [ gdZ for some

I

;

g € L(f) = sp{f(t,-);t € T}, and S

e e

o

s(t) = [X(t),Y]q = [fnf(t)dz,fngdZ]a =

>

= flf(t)g<a—1>dm = Jf(t)zdm,

AL AR o I

. _ <a—I> _ pyna-—1
wherez = g € Lax(m) and “Z”La*(m) = Y|l ™"

L]
' The proofs of iii) = i), the uniqueness of z and of the isometric isomorphism are

identical to those of Proposition 2.1. 0
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a,,
;l"g Further, the well known dichotomy on the admissible translates of a Gaussian 3
o
J‘|
te process — namely that the admissible transiates of a Gaussian process are precisely the .
0
: functions in its RKHS, and its translates by functions outisde its RKHS are singular — -
A \
N
has a partial analog for pth order processes 0 < p < 2, where the RKHS is replaced by |
1 the function space F. Our result extends that of Théoréme 4.1 in Fortet (1973) to ptl’l
A order processes with 0 < p < 2, and when applied to SaS processes with 0 < o < 2, it :
4
& generalizes Proposition 10 in Zinn (1975) to any SaS process. "
ol ]
i 3
\ 1
,). Proposition 2.1.4. Let X = (X(t); t € T) be a pth order process with 0 < p < 2. [If :
' s & F then x Loy Consequently all admissible translates of X belong to F.
p 0 s+
N e
I
'5 Proof. The proof is adapted from Pang (1973). If s € F, then )
" 3
» n
- |E§=13ns(tn)| 4
‘ £ sup N = . .
" ”anlanx(tn)”Lp(P)
& p
o, Hence for each n € N, we can choose N, a k> t ko k = 1,...,Np such that s
q n\ nﬂ c‘
l“ ‘4
SRR 2y (b ) 3
4 k=1 n,k n,k 1/}) ~
) N, >n . -
e ”Zkzlan,kx(tn,k)”Lp(P) )
L -
N Let sp = lej_f_lan,ks(tn,k)' Without loss of generality we can consider s > 0 for all -
- 7,
. n. Consider the random variables defined on (XT.C./AX) by oy
) ‘-
a
» V T N
: Ya(z) = Zi(glan’kr(tn’k), reX'. >
7 v
. %
. By the Markov inequality we have ::
, »
9, v
l‘x(Yn > sn/2) < l‘x(|Yn| > sp/2) t i
h o
I
1 2

o m N
"u'\-
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< 2P||Yn;|zp(p)/s§ <2P/m -0 asn — oo
and
Hsyrx(Yn 2 sn/2) = px(Yn+sp 2 Sn/é)
= px(Yn > — sn/2)
> pyx(IYnl < sn/2)
=1~ px([Yn| 2 sn/2)
> 1~ PIVallL (py/ok
21~2p/n—»1 as n — oc.
Therefore px L e o

Restricting our attention to SaS processes we see that in contrast with the
Gaussian case, @ = 2, where the set of admissible translates is always the entire space
F,i.e. the RKHS, the set of admissible translates of a SaS process with o < 2 may be as
large as the entire function space F or as small as {0}, as is seen by the following

examples.

Stable Motion: If X = (X(t);t € [0,1]) is a SaS motion, i.e., X has stationary
independent SaS increments, it is known (Brockett and Tucker (1977), Gihman and
Skorohod (1966), Zinn (1975)), that X has no nontrivial admissible translates for

0 < @ < 2. On the other hand for 1 < a < 2, its function space is the space of

absolutely continuous functions with s(0) = 0 and derivative in La*(Leb), lLe.

F = {s st) = fgs’(u)du.t € [0,1], s € L_.(Leb)}

with ”SHF = Hs’HL +(Leb)’
a
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Sub-Gaussian processes: Let X = (X(t); t € T) be an a-sub-Gaussian process, i.e. its

finite dimensional characteristic functions have the form

E{exp(ZN_ anX(tn))} = exp{—%zﬁ‘,mzlanmtn,tm)am>“/ )
where R is a covariance function, or equivalently

x@iten k@ Pewitem,

where A is a normalized positive (a/2)-stable random variable independent of the
Gaussian process G = (G(t); t € T) which has zero mean and covariance function R. It
follows from Huang and Cambanis (1979) that the set of admissible translates of X
coincides with the RKHS of G, once we observe that there the proof depends only on the
representatior of spherically invariant processes as scale mixtures of Gaussian processes
and not on the existence of second moments. Moreover for any Y € £(X),

X(1).Y]a = 22/ (E(W2)} 7o/2

E(G(t)W),
where W € L(G) is obtained from G by the same linear operation Y is obtained from X
(see Cambanis and Miller (1981)). Therefore the function space F of X coincides with

the RKHS of G and is therefore a Hilbert space.

Stable processes as mixtures of Gaussian processes. It has been shown in LePage (1980)
that every SaS process X is conditionally Gaussian with zero mean, i.e. there exists a
sub-o-field § of F such that given §, the law of X is Gaussian with mean zero and
covariance function R. Denoting by GR such a Gaussian process and by #GR its

distribution, we have that for every Sa$ process X there exists a probability A on the
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space R of all covariance functions R such that

#x(E) = f%l‘GR(E)A(dR)

for all E € €. The SaS process X is thus a Gaussian process with random covariance

N

n.m=12n R(tn.tm)am are

function R, and it is easily checked that all quadratic forms 3

positive (a/2)-stable random variables. Likewise we have for all E € C,

"s+X(E) = fst“s-{-GR(E)’\(dR)'

It follows that if s is an admissible translate of almost all GR'S, then it is an
admissible translate of X too. This gives a lower bound for the set of admissible

translates of X, namely

U N RKHS (R).
ACR ReR\A
A(/\):O

Thus a Sa$S process will have admissible translates if it is a mixture of Gaussian
processes whose RKHS's have a common part, i.e. if mRe%\/\RKHS(R) # {0} for
some A(A) = 0.

The converse does not seem to be necessarily true, i.e. an admissible translate of X
may not be an admissible translate of almost all the Gaussian processes whose mixture
is X.

It also follows that a singular translate of X is a singular translate of almost all the

(Gaussian processes whose mixture is X, and furthermore the same event separates them.

This gives an upper bound for the set of singular translates of X, namely
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Conversely, if s is a singular translate of a.e. Gg (1), it may not be a singular translate
of X; but if furthermore the separating set of y and u does not depend on R
a.e. (A), then sis a singular translate of X.

When a SaS process is a mixture of Gaussian processes having the same RKHS
then we show that a dichotomy prevails, with every translate being either admissible or

singular.

.‘?t.'—.s »

Proposition 2.1.5. Let the SaS process X = (X(t); t € T) be the A-mixture of Gaussian

Pel's

4.

processes Gp = (GR(t); t € T) such that RKHS(R) = H a.e. (A). Then sis an

P
a A 4 3

admissible translate of X if and only if s € H, and s is a singular translate of X if and

P H A S
o)

‘

only if s ¢ H. '

3K
-

s
‘s

A
L. :
« 4 e,

Proof: If s € H, then s is an admissible translate of a.e. GR(A), and hence of X.

S
o

Now assume s ¢ H. Let RKHS(R) = H for all R € R\ A, A(A) = 0, and fix

RO € R\ A. Then for each n € N, there exit N, an 13 Ny tn,l’ ""tn.Nn such that

N 2 . i’;-
le__zla‘ns(tn.k)l > IR

N 2=
Elzkznlan,kGRO(tn,k)]

=
St
+ @

' " ‘e '!
oAl

.t
T ]

PRI

Since for every R € R\ A, RKHS(R)

H, there exists 0 < cg < such that

Ll.\ "

";" @y
o

N 2 LN 2
B )20k OR (i)™ S cREIZL D 2GRy (tn x|

“
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T
.,1

{05

As in Proposition 2.1.4, let s = Zsﬂlan ks(tn i )- (and WLOG assume s > 0) and

Ly

&

2

Yn(o) = SN0 a ot ). ze XV so that
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>
~
2 Nn 2,2 &
'MGR(Y“ >sn/2) <2 Elezlan’kGR(tn)l /s
N 2,2
< 4CRE|ZL21an,kGRO(tn)| /sn -
S4CR/H—~0 as n — ~, "
and
Hs+Go (Yn2sn/2) 21— b (IYnl > sn/2)
R R .
21—4CR/1’1—~01 as n — x. K
Hence by the dominated convergence theorem ('
)
¢
#x(Yn 2 50/2) = [pug (Ya 2 sn/2MdR) = 0 asn — x. x
-
and Ny
. i
-
’ 2 = 9 — — :
Hspx(Yn 2 sp/2) = f%#5+GR(YnZSn/—)'\(dR) 1 as n x. t
.
b
This implies By L HsiX- Hence every s ¢ H is a singular translate of X, and the proof :
of the dichotomy is complete. D :'_
e
’
The assumptions of Proposition 2.1.5 are satisfied when X is sub-Gaussian, i.e. X is -
Y
. . . 1/2 . .
the mixture of the mutually singular Gaussian process a / G, a > 0, which have Ny
identical RKHS: or in the more general case where X is the mixture of Gaussian N
N Al
processes with random covariance function of the form }::;?__IAH Rp(t.s). where the Ryy's -
are fixed (nonrandom) covariance such that Ry — cpm Ry, is nonnegative definite for all R
nm = [...N, n#m, and some 0 < ¢y < o0, and the positive random variables )
A Ap. are jointly (a/2)-stable. t
The usefulness of these general remarks is limited by the fact that the only SaS >
S
S
mixtures of Gaussian processes. which are currently known explicitly, are the sub- hS
)
(Gaussian processes, and the more general finite sums Z?}I_lf\n Gp. where (Aya Ay) o’
{
.‘
K.
T o N e T T e
e R




20
is positive (a/2)-stable and independent of the mutually independent Gaussian processes
GGy

Further examples where the set of admissible translates is trivial or a proper subset
of the function space F are presented in the next section. It should finally be recalled
that the set of admissible translates of a SaS process is always a linear space, even if it
is not the entire function space F (Zinn {(1975), Corollary 5.1). However, as will be seen
in the next section, the restriction of ””F to the set of admissible translates may not be
the most natural way to define a topology on it. Also, from the linear structure we have
that Borx K Bx = By € #gx {see e.g. Thang and Tien (1979)) so that for everv

admissible translate s, Bsy X and py are equivalent.

2.2 Translates of invertible processes

In this section we present some general results on the admissible translates of
certain SaS processes with invertible spectral representation.

Let X = (X(t); t € T) be a SaS stochastic process with spectral representation as
in (1.3.2). It follows from the continuity of the stochastic integral map f — [fdZ and
(1.3.1) that the representing functions {(f(t,-); t € T)} are linearly dense in Lg(m), i.e.
that L(f) = Ly(m), where L(f) is the completion of {(f) = sp{(f(t,-); t € T)} in Lo(m),
if and only if £(X) = L(Z). Processes satisfying this condition will be said to have an

invertible spectral representation or more simply to be invertible.

Every Gaussian process is invertible Cambanis (1975), construction in Theorem 2.
This is not generally true for non-Gaussian SaS processes as can be seen from the fact
that the linear space of a sub-Gaussian process does not contain {(nontrivial) independent
random variables (Cambanis and Soltani (1982), Lemma 2.1). Necessary and sufficient
conditions for a general Sa$S process to have an invertible spectral representation are

given in Cambanis {1982), Theorems 5.1 and 5.5. A stronger form of invcrtivility for a

nonanticipating SaS moving average is considered in Cambanis and Soltani (1982),
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=) Lemma 3.1. SaS processes with invertible spectral representation in L2([0,1], Leb), i.e. ;
e 7
Lo-5p{f(t,-); t € [0,1]} = Lo([0,1], Leb), are considered in Zinn (1975); clearly such a :
X +3
b process has also invertible spectral representation in L4([0,1], Leb). Examples of by,
i. i
:: invertible SaS processes will be presented in the sequel. E
b %
. For invertible processes the problem of finding their admissible translates can be b2
) el
> reduced to finding the admissible translates of the independently scattered random 2
A 3
> measure Z, which we now consider first. R :
s bt
The next proposition is essentially based on Gihman and Skorohod (1966), =
K . Theorem 7.3. It extends to independently scattered SaS random measures with non-
) ;
:'. atomic control measure the result in Brockett and Tucker (1977) and Zinn (1975) on w
¥ XN
] %
\ . . . . .
admissible translates of independent increments processes in [0,T] which are :
“ «
~ stochastically continuous and have no Gaussian component. It establishes a dichotomy .:
A3 :
: for the translates of a general independently scattered SaS random measure and it t :
.
¥
characterizes its admissible translates as those of its atomic component. !
' f
a L
N The following notation will be used in Proposition 2.2.1. Recall that if a o-finite )
- measure space (},0(3),m) is such that #(3) contains all single points sets (e.g. I is a N
-.. \I
Polish space, o(3) its Borel sets, and I the §-ring of Borel sets with finite m-measure) F\.
N Ll = 3
y then m = ma +my where my is purely atomic and my is diffuse (non-atomic) (Kingman f.
2 t
e h
‘; and Taylor (1966)), and the set of atoms is at most countable, say '
‘- ] A
- A = {ap:n € {1,2,....,N} N N}, N the number of atoms. Thus if Z = (Z(B): B € ) is oY
. 1
'.:". an independently scattered SaS random measure with control measure m, it can be :_%
3 3
N expressed as N
o ':\1
™ R

.
t
-t

l.‘
.-
D

~ Z="2a+2y, ]
:: :':1
~ K
) where Z, and Z 4 are independent SaS§ independently scattered random measures defined WS

forall B € 3 by
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Za(B) = Z(ANB) and Z4(B) = Z(A°NB),

Bl

and have control measures my and my respectively. The atomic component has a series

PO B

expansion

Za(B) = LN | 1p(an)Z({an})

.
"

which can be normalized by using the i.i.d. standard SaS random variables

IO

R

Zyn é Z({an})m—l/a({an})

»

P
LSS

with E{exp(iuZy)} = exp(—|u]?¥), as follows:

R ¥
A

2a(8) = TN 1g(an)m™/“({an}) Za.

N b o

LN R K P

Proposition 2.2.1: Let Z = (Z(B): B € 3) be an independently scattered SaS random

I3 .
Iy 'i'l‘-{\(

& &

measure with 0 < a < 2 and con*rol measure m = ma+m g, and let S = (S(B); B € 3)

,‘;.‘ .’

be a set function. Then the following are equivalent:

A A

PN

1) S is an admissible translate of Z,

S is an admissible translate of Z5,

oy,

P
LI T S R

S is concentrated on A, i.e.

$B) = TN_ S{an1g(an),

SN istanhi2/m”  (fan)) < .
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Furthermore a translate which is not admissible is singular.

'vr': ‘i.'r’
L]

Proof: Let (5 and Cd be the stochastic processes with parameter set 3 defined vu Liic

£,

s

probability space (is, C()_(S), pg) by

2
VY4,

¢a(B,2) = HANB), and (y(B,x) = (A°nB), z€X’, Bes. o0
»l' (]
Clearly et
'
l.
ot
(2.2.1) (a(B,Z2(-w)) = Z(ANB,w) = Z4(B,w), and :
!
(4(B\2(-w)) = Z(A°NB,w) = Z,(Bw), as. (P), o
’
3
", ¢
so that (4 and Cq are independently scattered SaS random measures with control '\:
~
b
M
measures mg and m respectively. Let (5 and ¢4 also denote the corresponding linear '!jr'(
»
maps r — (4(-,z) and z — Cd(-,z) from x? into %3 :':
1) = ii) Suppose pgrg K Bz Hence by Proposition 2.1.4, S € F and by ‘\',,E
definition of F the map F:L(Z) — X defined by N
-'r %)
Ret
n n Yo
F(EkzlakZ(Ak)) = Zk-_-lakS(Ak) tE
NN
P
is a well defined linear functional so that S is a signed measures on . Furthermore since .\_
)
.
n-’.’
1/0 -.‘_-
IS(B)| < CpallSIpllZ(B)lla = Cp.allSlgm(B)]™" . ','-'
-
e
_ Y
S is absolutely continuous with respect to m, i.e. S(B) = fBde for some z locally in .:\
.¢:-
Ly(m): z1p € Ly(m) for all B € 3. ;'-.
It follows that ”S+Z“€ 1 < #ZCJI or equivalently A.d(" S) is an admissible \E:.
A
Ny
S
.
L3
~3
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translate of the process Cd’ since Cd is linear. Now

- - 5 A
(4(B,S) = S(A°nB) = cf zdm = [zdmy = S;(B).
A°nB B

Since m 4 is nonatomic it follows from a well known results (Halmos (1975), p. 174)
that we can find measurable partitions {Bj k(B):k = 1,2,...kj},j = 1,2,..., of B for

which

(2.2.2) r{(la.x md(Bj,k(B)) —_ 0 a.Sj — .

I<k<K.

J

For notational simplicity we will omit in the following the dependence on B. It follows
that the triangular system of rowwise independent random variables

{Cd(Bj,k); k = 1,2,...,Kj,j = 1,2,...} is infinitesimal, i.e. for every ¢ > 0,

max
1<k<K;

K.
Hence, since for every j, Cd(B) = Ekilcd(Bj k)’ we have from the central limit

theorem for triangular arrays and the fact that Cd has no Gaussian component that

K.
. . . . J —
liminf Iminf Var{E, 2 1¢a(Bj )} (—e,0)(Ca(Bp)} = 0

(see e.g. Araujo and Gineé (1980), Theorem 4.7). Thus by Chebyshev’s inequality
0 Ky :
(223) T3 G4BT Ca(B) 0l = 0

in uZ-probability (in Lp(pz), p € (0ia))asj — and ¢ — 0.

On the other hand, if Sd(B) = fBded and md(Bj.k) — 0 as j — = then

pzCq(By )l 2 €) — 0 as j — oo

flf LR At
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e v i N J
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Sd(Bj k) — 0asj — oo, and hence for j large

K. K.
Sd(B) = Zkilsd(Bj,k) = Ekilsd(Bj,k)l(_e,c)(ISd(Bj,k)l)-

NN e A ‘7"}

P i R

Similarly

. N h
'&{A.(' -"’." LS

K.
(2.24) T, 3, (S4(By ) + CalBy N ¢ (ISq(B; 1)) + Cq(Bj ) — S4(B)-

R o
]
in p-probability asj — ooand e — 0. ';‘.:
A X
' 3 3 '::
X Define for B € J the map ¢(B,-): X — X by g
v ;
! ¥
\ 99 . .. Kj ’,!n
: (2.2.5) #(B,z) = lngnajhﬁmofo Zk:l dBj,k)l(—e,c)(lr(Bj,k)l)' 'r:
3 Et
N 3
- Suppose Sd is not identically zero. Then there exists B € 3 such that Sd(B) # 0. ;

It follows from (2.2.3) and (2.2.4) that

P
v
[N

g -
.

.

[N |

1

o« -

K 8(B,(4(-2)) = 0 and ¢(B,Sy+(4(-2)) = S4(B) ae. (ng)

.

-1 -1 N - )
: Thus ”S+Z¢ (B,) L yzqﬁ (B,-) and hence By, 1 py which is a contradiction. '& A
Therefore Sd(B) = fBded =0forall B € jie.z =0 a.e. (md), so that :(\
)
« V \,:.
. (2.2.6) S(B) = [gzdma = 2;121 z (an)lg(an)m({an}). t‘:
: N
0
) Reasoning as before we have “S+ZC;1 < pZ(a—l, i.e. (a(-, S) is an admissible o
. R
: translate of {5 (or Z), and by (2.2.6) _:
: 3
L
; )
) Ca(B,S) = S(ANB) = [ zdm = [zdma = S(B) ~
A ANB B <
» li {
‘ b
2

o«
"
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i.e. S = (a(+,5) is an admissible translate of Z,.
ii) = i). Suppose S is an admissible translate of Z5. Since Z = Z5+74 and Z,
and Z, are independent ‘we have u; = 7, * #Zd. Then BS+Za < Bz, implies

BSyz < pg. Indeed

0 = l‘z(B) = figﬂza(B—l‘)l‘Zd(df)

implies

pZa(B—x) = 0 a.e. (pzd)
hence

0 = ps+za(B—r) = uZa(B—S—x) a.e. (,uZd)
and thus

“S-{-Z(B) = #Z(B_S) = fiS#Za(B—S_z)“Zd(dx) = 0.

ii) = iii). Because S € F, S is absolutely continuous with respect to m ,
S(B) = 25_15({%})13(%). Let $:X3 — XN, where N = {1,...N} if N < 0o and

N = N otherwise, be defined by

W(@In) = ¥(nz) = Cal{anhn)/mY “(fan)).

Thus by (2.2.1), ¢¥(n,-}, n € N, are standard Sa$ i.i.d. random variables,

Wn.S) = Cal{an} S/m%({an}) = S({an})/m"*({an})

and

w(n.S+z) = v(n8)+e(ne) = S({anh)/m" *({an})+u(n.2).

Now HS+Z, & 7. implies “s+za‘¢’—l < “Zaw—l' le.
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1/ . _
(S(ap)/m™" "({ap}); n € N) is an admissible transiate of the random element (¥(n,-); n
€ N) defined on the probability space ()—(3, C(YS),;;Z). It follows from Shepp (1965) if N
2

= oo and trivially if N < oo that zles%{an})/m /% (an}) < oo

. . N 2 2/a .

iii) = ii). Conversely, if Zn—ls ({an})/m”™" "({ap}) < oo it follows from Shepp
(1965) and the fact that stable densities have finite Fisher information (DuMouchel

/

(1973)) that (S({an})/m1 a({an}); n € N) is an admissible translate of

(¥(n,"); n € N) (the result is trivial if N < o). Therefore
TN S{anhig({an}) = S(B)

is an admissible translate of the process
SN 1peahm *(anhums = TN 1p(an)({an}e) = Ca(B.)

and hence of Zj,.
To prove that a translate S which is not admissible is singular it suffices to consider
such a translate in F, i.e. from the proof of i) = ii), S(B) = fBidm. If

m4([z| > 0) > O then ) L py. Thus assume

S(B) = [g2dma = TN_ S({an})1p(an)-

/

f)
Since it is not admissible, by iii) N = oo and 2§:152({an})/m— Q({an}) = 0.

Hence from Shepp (1965), (S({an})/ml/a({an}); n € N) is a singular translate of

(v(n,-}); n € N), ie. “S+Zw_1 4 yzwhl. which implies #s47, 1 R 0

It follows that the admissible translates of a SaS independently scattered random

measure are quite different in the Gaussian and non-Gaussian cases. Indeed. for Z
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0
Gaussian (a = 2) every element in its function space (i.e. its RKHS) o, :
)
e -3
F, = {S; S(B) = [gzdm, z € Ly(m)} . :_:_
= {S: S signed measure on o(3), S < m, $2 € Ly(m)} ;
(see, e.g. Chatterji and Mandrekar (1978)) is an admissible translate, while, e.g. for Z 'j
N
non-Gauss'an with 1 < a < 2 its only admissible translates are S(B) = fBde, ".
e N 2, 2/a e
z € Lgx(m), withz = 0 a.e. (my), and En__IIS({an})l /m~" " ({ap}) < oo. Hence for ;
\J
1 < a < 2 the set of admissible translates is a proper subset of the function space F, _
A
ﬂ
which is given by r:
)
an
L.
Fa = {S: s signed measure on c(3), S € m, (cii_ri € Lgx(m)}. :::
b
“-
'
In particular, while a diffuse Gaussian random measure has a rich class of admissible E 4
.
translates, a diffuse non-Gaussian SaS random measure has no admissible translate : 3
whatever. On the other hand, if m (or Z) is atomic (my = 0), the condition in r:.
o
Proposition 2.2.1 iii) extends the Gaussian condition. Indeed if @ = 2 and L
-
W]
e
_ (.48 4m = N ds %
sB) = fpdEam = £V Sam{an))
o
»
2 Ry
then Z:_1|S({an})|2/m({an}) [a < o0 is equivalent to g—.r% € Lg(m). "o
The results of Proposition 2.2.1 can now be used to obtain a dichotomy for the :-::
translates of an invertible SaS process, and to characterize its admissible translates as :‘\
o~
those of its atomic component. In order to state the result for a SaS process X with NN
Y
~ .'
spectral representation X(t) = flf(t,u)Z(du) and control measure m, we introduce the N
N
independent SaS diffuse and atomic component processes of X: E'
l'\
%
-
o
[ ]
e
A
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Xd(t) fACf(t,u)Z(du) = flf(t,u)Zd(t),

P Xa(t) = X(t) = Xy(t) = [pf(t)Z(du) = [f(t,un)Za(du).

The atomic component X, has a series expansion
3 Xa(t) = LN f(tan)Z({an)),
.
;" which can be normalized by putting
i
\
!
1 1/a 1/a
' Zn = Z({an})/m" % ({2n}) and f(t) = f(tanm' *({an}).

so that the Z’s are standard SaS i.i.d. random variables, for all t € T, Z§:1|fn(t)|a

< 20, and

Xa(t) = LN fa(t)Zn.

-
S ‘.- '.-\.

)

b

-

Proposition 2.2.2. Let X = (X(t);t € T) be a SaS process with 0 < a < 2, invertible '_:

» Pd

) spectral representation X(t) = fﬂf(t,u)Z(du) and control measure m. and let :

)
y s = (s(t);t € T) be a function on T. Then the following are equivalent:
- =
3 i) s is an admissible translate of X, ::r.'_
- i
i) s is an admissible translate of X,, i

)

A 2 ~
; i) s(t) = zg‘_ls',,f(t,an) with E:__lls’rﬂ?/m /% ((an}) < o -
1 - - ‘\.
' ie. .

- s(t) = ZN spfn(t) with ZN_ [sn[2 < 0o. "

n=1 n=1 )
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Furthermore a translate which is not admissible is singular.
Proof: i) Since lg € Lo(m) = L(f), for any B € J, there exist
én(B,-) € sp{(f(t,"); t € T)}, n = 1,2,..., i.e.
N{B
on(B.) = ThHBla | (B, L (B),),
such that
én(B,-) — 15(*) in Lgy(m) as n — .
Define
Np(B
én(B.0) = £Rn(Pa | (B) att,  (B)), zeXT.
Thus
(227)  sa(BXCw)= Th0Pa | (BIX(t, | (B)w)
o LA n=1 “n)k nk\="
= f|¢n(B,u)Z(du,u) — fnlB(u)Z(du.u) = Z(Bw)
in Lp (hence in probability) as n — oo. Thus (¢5(B,-); n € N) converges in uy-
measure. Let (énk(B,-); k € N) be a subsequence converging a.e. (uy ) and define
Z(B) = Z(B,) = 11(m_].i.n.go¢nk (B, ) 1{z;¢nk(B,r) converges}(')'
7(B.-) is a well defined C-measurable function on XT for each B € 3. Hence
7 = (Z(B): B € 3) is a stochastic process on the probability space (XT,C.pX), and from
(2.2.7), Z(B.X(-.w)) = Z(B.w) a.s., so that 7 is equal in law to Z. i.e. Z is an
independently scattered SaS random measure with control measure m.
i) = ii) Let s be an admissible translate of X. From Proposition 2.1.4. s € F. i.e.
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for p € (0.a),

RV AN

.,

DINPEN IR ||S||F”ZE:lakx(tk)“LP(p).

V'l) - "(’
[ Se % B

Hence as in Proposition 2.2.1, F Doal X(t =51 a s(t,)is a well defined
k=1"k"V'k k=1k"‘k

7,

AR |

continuous linear functional on £(X) and s(t) = F[X(t)]. Thus

- R N ‘/
““‘I(l(l o<

=,

‘ sa(Bis) = D2 2 (B)s(ty ) (B))

Y.
“‘.

s

FIENn(®) o | (B)X(t, ((B)] ~ FIZ(B)] asn — 5.

2

Lt

ik

Hence for all B € 3§,

CyUeAs

(2.2.9) Z(B.,s) = F(Z(B))

o
l.'"

. (2.2.10) Z(B,s + r) = Z(B,s) + Z(B,z).

P4 .‘...'l -".I' *

. Now if Zd(B,~) = Z(ANB,-), then Zd = (Zd(B,-); B € 3) is an independently
scattered SaS random measure with control measure m and by (2.2.10) it has Z¢(-.s)
as an admissible translate. But m is non-atomic, thus by Proposition 2.2.1.

' Z4(+s) = 0, ie. for all B € 3,

AN Pt L R A P
"‘n{’i ; 1'~1_;"‘~/v- hl{x.', l{ e

-
o
4

' 0 = Zd(B.s) = Z(A°NB.s) = F(Z(A°NB)) = F(Z4(B)).

and hence

St
P

s(t) = FIX(1)] = FXa(O+Xy(0)] = F[Xa(1)]

8

"'1q‘1

s
LI

P
v

(since X ) is obtained by a linear operation on 74 which implies F[X (t)] = 0).
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Therefore

s(t) = FiXa(®)] = FILN | fa(t) Zy]

N — N
Y= m®FZn) = 32, fa(t)sn

E,If:l fn(t.an) sn,

where sy = F(Zy) and sf, = ml/a({an})sn. On the other hand

Xa:

has distribution BX, and by the linearity of the map z — Xa(-,r), the function X ,(-.s)

(Xa(tr) = £N

n=1

is an admissible translate of X and hence of X,. But

Ra(tgs)

EN_ | f(tan)Z({an}s)
TN_| (tan)F(Z({an})]

TN f(tan)sh = LN

n=

i.e. s is an admissible translate of Xj.

f(t.an)Z({an},z); t € T)

Lf(tsn = s(b),

it} = i) The proof is identical to that in Proposition 2.2.1.

it) = iii} The proof is as in Proposition 2.2.1, with

vp(n.r) = Z({ap})/m

To prove that a translate which is not admissible is singular. it suffices to consider

l/a

Z({an}. s1/m " “({an})
FlZ({an})1/m " *({an})

sn/m*(an)) = s

({an}). so that by (2.2.9)
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s € F(X). i.e., s(t) = F[X(t)], as by Proposition 2.1.4, s € F implies singularity.

Suppose F[Xd(t)] # 0. Then there exists B € 3 such that F[Zd(B)] # 0 and by (2.2.9),
Z4(Bis) = Z(A°NB,s) = F[Z(A°NB)] = F{Z4(B)) # 0.

It follows from Proposition 2.2.1 that ‘us+XZd—1 L "de_l and hence Hs X Louxg-

Therefore s(t) = F[X5(t)] = 2?_1fn(t)sn and as in the proof of proposition 2.2.1,

2 . .
Z§:1|Snl- = oo implies g v L py. 0

control measure every non-zero translate is singular. In particular, this contains
Corollary 10.1 of Zinn (1975). Applied to SaS processes with purely atomic control
measure. Proposition 2.2.2 is a stochastic process version of a resuit proved in Thang
and Tien (1979), Theorem 4, for SaS measures with discrete spectral measures on
separable Banach spaces. The proposition completes the result in Thang and Tien
(1979) providing a dichotomy for the problem of admissible translates.

Proposition 2.2.2 also provides examples where the set of admissible translates is a
non-trival proper subset of the function space F of the process X. E.g. if
X(t) = > fh(t)Zp, t € T, where Zy.Z,,... are i.i.d. standard SaS random variables

n=1

with 1 < a € 2 and Lyo-5p{(fn(t):n € N};t € T} = l,. then

x x a*
Fo = (sis(t) = £ sy fa(t) T2, fsnl® < x}.
while the set of admissible translates is the infinite dimensional subspace (since a™ > 2)
. l 2 . .
of F 4 for which Z;O_llsnr' < c; hence we have equality only if a = 2. and proper
inclusion if 1 < a < 2. There is a natural identification between the set of admissible

translates. which is always a linear space, and the Hilbert space Iy, namely
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-y,

(snin €N) = s() = $07 ) snfn(:).

s
%
e
This map is invertible with the inverse map given by the transformation ¥ defined in the
”
J
proof in Proposition 2.2.2 restricted to the set of admissible translates of X (cf. 2.2.12). -y
-*
Thus for every a € (0,2), the linear space of admissible translates can be given a Hilbert o)
oy
. . ~
space structure by defining the inner product \.r:
(LA
[
<81,89> = <(s; sy )> =¥ s s n
1'°2 1,n/'°2.n 12 - n=1 "1,n°2,n’ M
SN
B
-:’ (]
00 . . . )
where si(t) = Zn—lsi n fn(t), i = 1,2. Note that in this case when 1 < o < 2, '.
a* 1/a* . . "'
HSHF = (Xl|snl® ) and hence ”“F is not a natural norm on the linear space of N
. . , : , R
admissible translates, in contrast with the case of Gaussian (@ = 2) and a-sub-Gaussian iy,
r;‘ {
processes with 1 < a < 2. &
BN
Important examples of SaS processes with invertible spectral representation are (»
4
presented in the following. -
.
»
Harmonizable SaS processes (and sequences). o)
\'.-l
S
Let X = (X(t); t € T), T = RY or Zd‘ d € N, be a Sa$S harmonizable process, i.e., X L
has the representation .
H
h:“
i<t,u ol
X(t) = fye~""7z(du), teT,
o
where | = R4 and [—1r,1r]d for T = RY and 29 respectively and Z is a Sa$ ey
RS
A
independently scattered random measure with finite control measure m, referred to as a0
the spectral measure of the harmonizable process X. If the spectral measure m is N
, , - vy
nonatomic and 0 < a < 2 then it follows from Proposition 2.2.2 that X has no A"\
g
.'\‘_’
S
l_ .\.
e
B B P R A B A A T T T LT e RN
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nontrivial admissible translate. When the stable distribution of Z is radially symmetric.

1.e. when X is stationary, this result exhibits a different behavior compared with the

stationary Gaussian processes a = 2, whose admissible transiates are precisely the

functions

v

s(t) = fy e <" z(uym(du), 2 € Ly(m).

L]

y

¥,

5

1

| In contrast, if m is purely discrete, i.e. X has a Fourier series representation

d 'T rl.l

§ . "
t
Vs X(t) = ZII:I_I bl’l el<cn’ > va N S o0, ™
= ~
.: %
:';
. . . . o0 a !'
. with Zp's i.i.d. standard SaS random variables and En_llbn] < 00, the set of -
. N
. admissible translates is w.,
[ “~
. :;
. . N i<cp,t> | ; 9 )
.; {ss(t) = TN_sne ™70 TN fsa/bn? < oo}y i
,
o ’
-
" ’
s ¢

and depends on a, 0 < a < 2, only via the sequence (bpy; n € N) € l,. In other words

. ]
] for fixed (bp; n € N) € lﬁ’ 1 € B < 2, define o5
.; 3
) -3
" "
n Xo(t) = zi":l bpexp{i<cn,t>}Zp g » =3
[)

e
2y

where the Zp o's are standard i.i.d. SaS with 3 < o < 2forl < 3 <2andl1 < a <2

5N,

v

Y

for 3 = 1. Then all these processes X, have the same set of admissible translates.

1-—

L}

s

.
? v

FARREAT
v e
h

s

Continuous time SaS moving averages.

¢

5
v o

L

s 8

Another class of SaS processes is the class of real moving averages,

b 5 Dl

A

"

[




X(t) = fg f(t-u)2(du), t € R,

where Z has Lebesgue control measure and f € Ly(Leb). When f vanishes on the
negative line, they are called nonanticipating moving averages and they occur as the

h order linear stochastic differential equations with constant

stationary solutions of nt
coefficients driven by stable motion Z.

In the Gaussian case a = 2 the admissible translates coincide with the function

space (RKHS)

{s: s(t) = fRf(t—u)z(u)du, z € Lo(Leb)}

{s: s € Ly(Leb), s/t e L,(Leb)},

where ~ denotes Fourier transform.

Examples of moving averages with invertible spectral representation and therefore
with no admissible translates, can be obtained by taking

i) f continuous and equal to zero on (—o0,0) and at infinity (Atzman (1983),
Theorem 2),

ii) a € (1.2) and f the Fourier transform of some function F in Ly ,(Leb) with F
# 0 a.e. (Leb) (Titchmarsh (1928), Theorem 75).

Case i) includes nonanticipating moving averages with continuous kernel f, while
case i1) contains certain nonanticipating moving averages with discontinuous kernels f,

h

namely the stationary solutions of n'® order linear stochastic differential equations with

constant coefficients. There f(t) is a linear combination of functions of the type

tk_le_atl(o oo)(t) with k € N and a > 0, which are Fourier transforms of the

LQ*(Leb) functions ['(k)/[27(a+iu)]. Hence f is the Fourier transform of an La*(Leb)

function which is not zero a.e. (Leb) so that sp{f(t—-); t € R} = Lg(Leb),i.e. Xis

h

invertible. Thus solutions of n'" order stochastic differential equations driven by SaS
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motion have no admissible translate for 1 < a < 2. This is in sharp contrast with the

Gaussian case @ = 2. E.g.,ifn = 1,{(t) = e (0 C>o)(t) and the stable Ornstein-

Uhlenbeck (OU) process

. —(t—
X(t) = U e (=97 du). ¢ € R,

A

o

has no admissible translates for 1 < o < 2, while for @« = 2 all translates of the form ;\',
"

Ly

Mo
A’

@
s(t) = ft e—(t—u)z(u)du, z € Lo(Leb) and t € R, A
oo 2 it

.l

5

are admissible for the OU process X. -5’:;
o

"-‘-

Discrete time SaS processes (SaS sequences) with invertible spectral representation ﬂ\-

e,

have similar sets of admissible translates in the Gaussian and non-Gaussian stable case.

Py

Of course nonadmissible transiates are singular.

J0

-s.:_
Independent sequences and partial sums of independent SaS random variables :'_:
-,
e
The set of admissible translates of a sequence of independent SaS random variables "’;
X = (Xp; n € N) is given by
0 2
{s = (sn;neN); . (3n/lIXnlla)® < oo}
The set of admissible translates of a sequence (Y = ZE—I Xyin € N) of partial .}‘::
sums of independent SaS random variables Xy is s
:__\:
o0 2 2 ‘:“
{s = (sn;n €N); anl (Sn—sn_l) /1 Xnlla < oo, 5o = 0}. -,:-
\f'-
o
Mixed auto-regressive moving averages of order (p.q) (ARMA (p.q)). \.::
N
v
o
\'
o
.
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Let X = (X,: n € N) be defined by the difference equation

where Z = (Zp; n € N) is a sequence of i.i.d. standard SaS random variables. If the
polynomials P(u) = l—a,lu—.,.-a.pup and Q(u) = 1+b2u+...bquq satisfy the
condition P{(u)Q(u) # 0 for all u € C with ju| < 1, then the difference equation defining

X has a unique stationary solution of the moving average form

_ n
Xn = X o Bn—kZk’
and in addition

X,
J n—)

Xn—'zaD h

Zn )

(see e.g. Cline and Brockwell (1985)). The coefficients {gn; n € N} and {hp; n € N} are

uniquely determined by the power series expansions

Q(u)/P(u) = 20 g’ and P(u)/Q(u) = 1-552 ) by v, fu] < 1.
Thus £(X) = L(Z), i.e. X is invertible, and hence, by Proposition 2.2.2.,

s = (sp; n € Z) is an admissible translate of X if and only if it is of the form

n
Sn = Xy oo Bn—k%k

20 2
where Zk:—oo zj < .
We should note the different behavior of moving averages in continuous and in
discrete time. A continuous time moving average may have no admissible translates,

whereas a discrete time ARMA sequence has a set of admissible translates identical to

-
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the Gaussian case. The difference will be in the form of the Radon-Nikodym derivatives.

2.3 Comments on the Radon-Nikodym derivatives

Expressions for Radon-Nikodym derivatives in the non-Gaussian stable case are
difficult to obtain even in the case of invertible processes since no analytic expression is
generally available for the SaS densities.

As observed in Section 2.2 the measures By and Bgix are convolutions of the
measures py with “Xd and PotXa with #Xd respectively, or in other words if
£:XTxxT = xT s the map Z(xl,xQ) = I)+19 then puy = (pxaxpxd)z_l and
BeiX = (“s+xa""xd)2_1' When Porx K By, we have the following lemma is

useful

Lemma 2.3.1 Let (Qi’ ‘.F-l), i = 1,2, be measurable spaces and let the map T: {1 =, be

measurable. If #q and pg are probability measures on (Ql,‘iFl) such that py < py, then

/

—1 /
du,T d
_ul_l oT = E, —dﬁ T| ae. (pl)
dpy T~ 1\dm

Proof. Clearly pr)T—l < ulT-l and for all B € ¥, we have
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. It follows from Lemma 2.3.1 that if HepxX K Bx then a.e. (,ux)

o d(p X

siX ) _ g (Ko 4 Xa XPX ) .
' duy KX d(pxaxpxd)
3 - E, (‘i‘:_+x_ / v )
X d/lxa
since
. d - X d
Hs+2la #Xd _ d”s+Xa “Xd _ s+ X,

§ duw xp (I]_J:Q) = dp (1:1) du (12) = Tdu (Il)-

. Xa "Xy Xa X4 Xa

X The determination of the above conditional expectation is not possible in general.

9 However if the process is invertible and has only atomic component, the invertibility of
the process allows the representation of the Radon-Nikodym derivation in terms of a
standard SaS density as shown in the following

k Proposition 2.3.2. Let X = (X(t);t € T) be a SaS process with a € (0,2), invertible

spectral representation and discrete control measure. If sis an admissible translate of X,

)
then a.e. (yx)

dp
s+X _ N [f(¥(n,z)—~¥(n,s)) T
d/‘X (I) = nn:l ( f(\Il(n,z)) .z € X7,
where ¥ is defined in (2.2.12) and f is the standard SaS density.
1,2,...,n}N . .
Proof. Let W¥: xT_. X{ n}ON be the map defined in (2.2.12), i.e.
5 1/2 .
¥(r) = (¥(n.z) = Z({ag}.z)/m "“({ap}); m € {1,2,...n}NN).
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By lemma 2.3.1.,

b
y . ““
] -1 ° — TEX du ’ v
B d[lx‘p X W \

ux ({7 o(6) = TN_ fa(t) ¥(n,2)})

P({wi X(tw) = ZN_| fa(®) ¥(n.X(-w)})

P({wi X(tw) = TN} fa(t) Za(w)}) = 1 o

[

L we have € = o(¥) (where ™ denotes the completion with respect to By ('“s+X))’ SO

1

) that

IE:(d"s-%)( /‘P) — d“s-’:—X.

On the other hand by Kakutani’s Theorem (or trivialy if N < o0},

T MGG Ey AL A,

/.

LS
v

« v
e B e

ey,

~ T ¥y a e

dugex? N = ¥n)

LI LT

d#xw-l n=1 f(yn) ' ;::

e

i y = (yn; n € {1,....,n}NN). Therefore —':-(
3 L3

. d t.{
3 FstX oy — N ((¥(n,z) — ¥(n.s)) T N
\ dﬂx (.L‘) - nn___l f(\I’(n,.z:)) , IE€ X', a 'E:‘
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For £ = X(-,w) the Radon-Nikodym derivative can be expressed as

Yy sy WS TN L

-

ke T e T

dpg x _ N Z({an},w)—sn Z({an}.w)
G O = = 1\ e ) m”"?{am

S Y )

LA

Ve (an))¥(n,s).

When o = 2, f(x+s)/f(x) = exp(sx —52/2) and thus we have the well known

a.e. (P). where sp = m

\ - ){n{.{n,')-{-',

expression

\ 2
&

z ) -

H Y.

= s+X .y _ 00 2 Y
duy (z) = exp [Enzl(snxn sn/2)] b

o

! MY

{ where for {¢n; n € N} a complete orthonormal system of eigenvectors of the covariance ol
b .

,-

s

1

operator of X and {Ap; n € N} the corresponding eigenvalues -

! '-.-’ ""

) -1
Xp = \I’(n,l‘) = /\n

/2
fy =(t) n(t)dt,

P

5t

sn = ¥(n,s) = )‘n—l/Q fl s(t) ¢p(t)dt,

RARSEL Y

NNDD

fr]
B

i

LY
.

or equivalently

b 4

'

.

2

Fil's

<

a o -1/2
Ht) = X, ;M én(t)xn,

n

7

[y

,,,
i
[

‘v”-'l"
L]

—1/2
st) = £ 2 éa(t)sn, EZlsnl? < .

‘y

AR}
N

For non-Gaussian stable processes explicit expressions for ¥ are not available in

general. One example where this is possible is when X is a Fourier series. i.e.




[o'e) iCn t

X(t) = En:l bpe *Zn, ZIbgl® < oo, teT.

Using arguments identical to the invension theorem for Fourier transform, one can show

that

¥ng) = by llim LT T,

where the limit is in py (“s+"() measure and for s an admissible translate, i.e.

00 icpt 2
() = L0 bpe Msn, Lo lsal® < oo,

we have

-1 icpt
sy, = bp 11112100517; f’_T_T e Mg(t)dt.

N
N
>,
)
=
Y

v 4
L3
X

: 1 T _—icgt N
d_pf."*'_)g(X(.’w)) — HOO f(’[l‘lin.,oo Qan f._Te [x(t'“’) ~(t)]dt )

d n=1
X ' 1
f(T]‘]ﬂoo 27by

P

fET elcntX(t.w')dt )

M

a.e. (P).
Other cases where the map ¥ can be determined are the discrete time SaS

processes we discussed in Section 2.3, e.g. in the inventible ARMA(p,q) we have
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» Y
e so that
)
@ 00
' Zp(w) = Xn(w)—ijlthn_J-(w),
)
N :
g and .
. =5,-32 h. : :
N R A .
o K
~N g
o . . . . <
o where zy, is as in example in Section 2.
[ " It is well known that the likelihood-ratio test is a decision rule that is optimum h
108
¥ ) with respect to either a Nequn-Pearson or Bayes criterion, i.e. if we observe Y and we )
::'
= want to test
A" 4
o g
. o ¥
,:: HO: Y = X versus HA: Y = s+ X, K
.", ) b
b
::’ the optimal procedure is to reject H if b
- b
P 2
. v
" d N
. u N
- d——s+x (Y) > L :
] HX -
_:' for some appropriately determine threshold (dependent on the criterion used). -
A In the Gaussian case (@ = 2) this procedures rednces to K
.-.\ I’
.-\ .‘.
“ -
:-- chnzlsn Xn > L. -
- A
'., In the non-Gaussian case, the likelihood ratio is difficult to implement even when it is ;“
i ~
i:-' expressed in the form H?_lf(xn—sn)/f(xn). N
o - ~
- The log of the ratio f(x~s)/f(x) has been studied in Stuck (1976); using series ™
expansions of the density f. Plots for log{f(x—s)/f(x)} = lg(x) were presented for some ::
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fixed values of s. Stuck (1976) also investigated the performance of the likelihood
(optimal) test versus the linear (Gaussian) decision rule for a finite number of terms and

fixed s. i.e. the case where the Radon-Nikodym derivative is given by the finite product

N f(xn—s)
Mozt “fomy

and the plots showed that the likelihood procedure has in general a much smaller
probability of error than the linear rule, even for values of o close to 2, such as ¢ =
1.95.

All inventible SaS processes with nonatomic control measure have no (nontrivial)
admissible translates when 0 < a < 2, whereas in the Gaussian case @ = 2, their set of
admissible translates coincides with their RKHS, which is a quite large class of functions.
Thus the detection of a nonrandom signal in additive Sa$S noise satisfying these
assumptions can in principle always be achieved with probability one even for signals of
comparable smoothness with the noise, i.e. the detection is singular (even though
practical detectors achieving this remain to be found). In contrast in the Gaussian case
(o = 2) the additive signal detection problem is regular for signals with comparable
smoothness with the roise (signals in the RKHS), i.e. a Neyman-Pearson test can be
constructed having a specified probability of false alarm which maximizes the probability

of detection (which is of course always less than 1).
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CHAPTER III

RESULTS ON EQUIVALENCE AND SINGULARITY

3.1 On the equivalence and singularity of certain product measures

The Lebesgue decomposition of product measures was first studied and completely
solved in Kakutani (1948). His criterion is given in terms of the Hellinger integrals of
the marginal measures, which may be difficult to compute, e.g. for stable measures.

The more special problem of translates of product measures with identical one
dimensional marginals was settled in Shepp (1965) in the ease of finite Fisher
information. It was observed in LeCam (1970) that under LeCam’s "[" condition the
sufficient condition for equivalence in She1» (1965) can be extended to a more general

scenario.

Here we show that under a condition closely related to LeCam’s condition, a nearly

complete extension of Shepp’s theorem holds. As an application the result on
equivalence and singularity between a sequence of i.i.d. random variables and an affine
transformation of itself extends to a large class of nonGaussian distributions. which
includes :n particular all stable distributions. Qur result also contains that of Steele
(1986) on the extension of Shepp's theorem to rigid Euclidean motions (i.e., rotations,
translations, and their compositions) of an Rk vector.

In Section 3.3 these results will be used to study the Lebesgue decomposition
between certain SaS processes (e.g., independent increments, harmonizable).

Before stating the main results we need to introduce some concepts for which we

refer to Strasser (1985) Chapter 1, Section 2 and Chapter 12 Sections 75 and 78.
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3.1.1 Preliminaries
Given two probability measures P and Q on a measurable space (2, ¥) their
normalized Hellinger distance d and integral H are defined by

a2(P.Q) = &f, | (d_g)l/Q_ ((-19)1/2@ N

v dv

H(P,Q) = fQ(dd_E)l/? (dQ)1/2

where v is any o-finite measure dominating P+Q, i.e. P+Q <« v (e.g. v = P+Q).

They do not depend on v and satisfy
0< H(P.Q) <1 and 1 — H(P.Q) = d3(P.Q).

Kakutani’s theorem states that if (uy: n € N ) and (Ap, n € N) are sequences of
0 0
probability measures and u = Xn:ll‘n and A = anl/\n are their product measures.

then
(3.1.1) LA & T H(pp, Ay) =0 o ziozld?(ﬂn.xn) = x
and if gp~Ap for all n, then
(3.1.2)  p~A & M2 H(up Ag) >0 }j’;":ldi’(pn. Ay) < x
(see Kakutani (1948)).

We consider the following setting. (Q.¥.v) is a o-finite measure space. and

{Poz # € O} a family of probability measures on (2.9) which are absolutely continuous

with respect to v. where © is an open subset of RK. Define F:0 — LQ(Q.‘J.V) = Ly(v)
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F(8) = 2(?)

F is said to be differentiable at 8, if there exists a map

DF(-,8) = DF(6): @ — RK

such that
IDF(8))| ke = JolIDF(w, 012, v(dw) < oo,
Lo(Q, F,v;R¥) Q R

- i.e. DF(8) € Lo(2,%,v; RX), and .
-~ 2 J
= 3
-2 _ _ 2 — 2 — \
> fQI F(6+h)—F(9) <DF(0),h>Rk [“ dv o(]|h||Rk) as “h“Rk 0. .
=i \
H-\r

-r: S

Y

j} As usual F is said to be differentiable (on O) if it is differentiable at each § € ©. The ]
.:_: '
" Fisher’s information matrix is defined by
o .
g I(6) = [, DF(9) DF(8)T dv

% 1
‘:: (where DF(B)T is the transpose of the column vector DF(8)). It is non negative definite. :'_'
\-. as aTl(f)a = jQ(aTDF(G))Qdu, and is positive definite if and only if the components of :
ol DF(8) are linearly independent functions in L2(u). )
o -
.: 3.1.2 Main result ‘:
: As in LeCam (1970), our purpose is to consider product measures -
" -
- 3
i : ’l
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h
:: 00 00 f
& {3.1.3) p = anlﬂn and A = Xn-:lAn . o
: Ry
. )
where
- o,
] 5
p N
Ky
\ By
: =P d Ay = s )
'0 lln 0 an n P6+hn o
. !
95 i
" .,
! 6 € ©is fixed and #+hp € 6, n = 1,2,.... Under the condition :'
Py ,:
21
Rl ol M '
Ly r: llmSUp H(P9+h,P0)/”h”Rk < oo, (
; Ikl|_, —0 ¥
. R "
7 b,
(v
L ;;r'
)
) LeCam (1970), Proposition 2, proved that Zzo-—l”hn“;k < oo implies g ~ A. Here, :
. BG:
> under the conditions that F is differentiable at 8, 1(6) is positive definite and the '_"_
; 3
> probability measures {Pe; 6 € O} are sufficiently separated, we obtain necessary and :"
y 0
D sufficient conditions for equivalence and singularity. .
} The separation type condition that we assume is ::
" N
kil . M 2 " '
) (3.1.4 for all sufficiently small 6 > 0, inf d“(P , P > 0. .
o ) y ]| k>5 ( 6+h g) k2
; R
o o
v .
o
< Note that if (3.1.4) does not hold then there exists § > 0 and a sequence (hp; n € N} in 4
:{f RX with ”h“”Rk > 6 such that d2(P9+hn’P0) — 0 asn — oo, i.e. forany ¢ > 0 and :\,
» -~
e for n large, d(P9+h Py) < ¢, and using a well known relation between Hellinger N
" n -
-N ’ ;
~ distance and total variation distance (see e.g. Strasser (1985)) we have "-;
‘:. :‘-
o ,1/2 S1/2 e
dv(P0+hn.P0) = sup | P8+hn(E)_P9(E)| <2 d(P9+hn,P0) <2 7. "
o Ee% o
- -
N Hence if condition (3.1.4) is violated. for ¢ arbitrarily small there exists ‘
B ”
b ! :
i "
<
. :
\'_'\.'.'-:v',.’ A n-'nn.“ ‘\'.." A\ “"
e T '
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) 50
"
)
- h € RX with Ihll g < 8 such that
»
)

E y ES‘épGj | P9+h(E) - PG(E) | < e
-~ Thus in this sense (3.1.4) is a separation type condition.
‘ We should also mention that the proof of the sufficient condition for equivalence
i: can be obtained directly from LeCam (1970), Proposition 2, since Lo-differentiability is
. clearly stronger than condition ”I”, but we choose to include a complete simple proof
: here.
-~

Proposition 3.1.1. Let x4 and A be as in (3.1.3), F be differentiable at 8 € © and I(#) be
) positive definite.

x
S

) i) If0 < |lhpll ,, — 0 as n — oo, then
7 ol
[\

[ee] 2 _
plArA Zn:l ”hn”Rk = ™
and
o0 2
B~ A < En=1 ”hn“Rk < oo.

f‘

o i) If condition (3.1.4) is satisfied then i) holds for any sequence (hy; n € N).
o

’

Proof. If since F is differentiable at 8, as 0 < ”hHIRk — 0 we have

S F(0+h) — (F(9) <DF(8), h> |

Y - M) = o)
: Rk RK 2

:: hence

o

_: | IPO+h) = FOlly () I<DFOLL> () .

(LI B Tl
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b Thus for any ¢ > 0, there exists § = &(¢) > 0 such that if 0 < HhHRk < 4, &
b,
o 1
Iy -
\- DF(6).h F(6+h)~F(8 DF(6),h> -
~ I<DFOMh> il () IF@+D=FOlp o,y I<DF@Ob> 4l ) ;
' I Bh Wl TH] e :
RK RK RK
;‘ ‘:_‘\
X “
Now N
\ [|[<DF(8),h> ||2 = [ |<DF(8),h> |2du = hTI(#)h "
; i Rk L2(V) (9] i Rk ! y
] Ny
) hence for all h € Rk, h # 0, ';
i %.r
<DF(6),h
I (6) >Rk”L2(l/) “'
k(8) < K(9) .
! T, N
e R -
.. where k(8) and K(9) are the smallest and the largest eigenvalues of 1(8). Since I(4) is o
N -
' positive definite k() > 0 and we can choose ¢ > 0 with 0 < k(6)—e so that for all ::‘
& 5
L, 0 < Iihll g < & i)
: )
=
Y F(6+h) — F(8 "
IF@+h) = FO)l_ ) 3
0 < L(§) < < u(8) o)
a Y] Kk ¥l
N, R (:
" s
)
: where L(8) = k(8)—e and U(8) = K(0)+e. Thus since dQ(PB, Pg) = =9
' HF(&)—F(&')“%Q(V)/S we have for n large :E
l‘ -*
2 ) 2 2 !
L°(8) [hnlig U(8) ||hn|le )
: 0 < ——5—F < & (un,dn) < —5—%- 3
" 4
P and the result follows from (3.1.1.) and (3.1.2). :
7
. '
e i) If (3.1.4) is satisfied and |lhg]| | # 0. then there exist § > 0 and a +3
; "
" h
1




subsequence (nj;j € N) with ”hnj”Rk >

2 2
Toqd® (undn) 2 T21d%(ppAyg) 2

IV

oo
ijl

and from (3.1.1), g L A. This combined with i) gives the result O

It should be mentioned that the differentiability of F(8) is generally difficult to

verify, but it can be shown that it is implied by the classical regularity conditions,

usually called Cramer-Wald and Hajek’s

statistical estimation theory and are in principle easy to check (see e.g. Strasser (19853),

77). However, L2-differentiability is weaker than any of these classical conditions, and
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inf d%(Py, ., Py) = oo,
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conditions, which play an important role in
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the definition of Fisher information presented here extends the classifical one. namely .

18) = - E(aa-;i In (%))

under the usual conditions on R

3.1.3 Examples

3.1.3.1 Affine Transformation in Bk.

Suppose (Xp; n € N) is a sequence

sequence of kxk matrices and (bp; n € N) a sequence of vectors. If we want to compare

the sequence of random vectors (Xp; n € N) with (ApXp+by: n € N} we can take as

parameter space © any open subset of
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o N
\ {6 = (Ab); A=(a):kxk matrix, b=(b;) € Rk} = N
/ N
\‘
‘. i.
:: ={6;8 = (al1""’alk""’a'kk’bl""’bk)} = :
4 b
) ~
g 2 2 .
- = RK +k = gk, Rk 3
; ?-"-
-
containing the point (I1,0), with -
o 8
]
4 2 _ k 2 2 _ k 2 g
5 “A”kak = Zi.j:laij’ “b“Rk = Zi:lbi ) ; ,
! )
'_. '
S L
¥, and :
< b
¥ 2 2 2
L < 2 ’.
: g = ||A + {|b . .
3 191 iy i = 4 e * 101G R
, 3
' )
M With P the common distribution of the i.i.d. random vectors X, and § = (A,b) we ~3
- define ::'
- K
ke :‘
v
b (3.1.5) PG(B) = P(A,b)(B) = P({AXp+b € B}) I
. 3
. o
and note that P:P(I 0y’ From proposition 3.1.1 we have the following t
- |
:
: b
« Corollary 3.1.2. Let the probability measures Pg defined as in {3.1.5) be such that for RS
g 2 2
. an open set © C RK™+K=RK",RK with (1.0) € ©. the family {Pp:0 € O} is dominated ;\
]
: by v. F(8) is differentiable at (1,0) and I(1.0) is positive definite. If Ay — T and by, — 0 N
o "o
:: as n — oo then -
: (Xn) ~ (AnXa+bn) & L lIbnl < > and T
a ;
o i,
v &
PR AT R T e N Tt R e i gt R R R i AN N P Ny T S R Bt T T ‘
T e S R e i
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o0 2
Tor IT=Anltpy < o

(Xn) L (AnXp+by) < Z;l.ozl

2
b = oo or
I n”Rk

00 2
Zn__.lnl‘An”kak = 0.

Furthermore if {P4; 6 € O} satisfies condition (3.1.4) the above conclusions hold for all

sequence {Ap,by) in ©.
Proof. Putting § = (1,0) and (Ap,by) = 6+h, we have hy, = (Ap~1ILby) and

0 2 _ 00 2 o0 2
En=1lPall ok = TazallAe g + 2nzy Pallpec

The conclusion then follows from Proposition 3.1.1. 8]

Remarks: a) Since the space of kxk matrices is finite dimensional, any norm can be
used in place of “'“kak‘

b) When Ay = I for all n, Corollary 3.1.2 extends the result in Shepp (1965)
on translates from sequences of random variables (in lRl) to sequences of random vectors
(in RK).

c) Corollary 3.1.2 contains the results in Steele (1986), Theorems 1 and 2,
who considers the case where A is a rotation, i.e. Apx+by is a rigid motion of x € RX.

d) When the Xp’s are Gaussian random variables with mean zero and
variance one, the result of Corollary 3.1.1 can be checked directly through the
computation of the Hellinger integrals H(P(I.O)’p(an,bn))' However, even for Gaussian

random vectors the computation of Hellinger integrals is not simple in higher
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dimensions.

3.1.3.2 Stable Sequences.

Here we consider general (skewed, not necessarily Symmetric) stable densities. We
denote by f(a 3.a,b) the general univariate stable density whose characteristics function
Al 1<%
is of the form

exp{—|au|%exp[—irB3 sgn(u)/2]+ibu}, if a1

fo_oooexp(iux)f(OI’6‘a b)(x)dx={
’ exp{—|au]—~i(28/r)au In(jau|)+ibu}, if a=1

where 0 < a < 2, |8] € aA(2—a). a > 0and —o0 < b < co.

Corollary 3.1.3. Let (Xp; n € N} be a sequence of i.i.d. stable random variables with
density f(ag,8q, ag, by) and let (Yp; n € N) be a sequence of independent stable
random variables where the density of each Yy, is f(ap,8p,.an,bn) with
(ans8n.2n:bn) — (00,50,307b0)~ Then

oe) 2
ZnOO:I( C"n“"‘o)2 < %0, anl(ﬂn—ﬂo) < 0o,

(Xn) ~ (Yn) { .
Zic;l(an—ao)Q < o0, and Zio.__l(bn—bo)" < .

and

( ) {'22?10:1(&"_010)‘2 = oo, 0r Ele(ﬁn—BO)Q = oo, or
Xn) L (Yn [ =4

T2 [(an~ag)? = 00, or T2 (by—by)? = .

Proof: Let © be any open subset of

{6=(a.8.a,b}; a € (0,1)U(1,2), || < aA(2—a),a >0, —c0 < b < x}
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- e

containing the point 85 = (ag,8(,agbg). It is known that the densities {fo; § € ©}

satisfy the usual regularity conditions of Cramer-Wald (DuMouchel (1973), page 952);
f)

hence f;/", g € O, are L2(Leb)-differentiable (see e.g. Strasser (1985), §77). Moreover

the Fisher information matrix 1(00) is positive definite (DuMoﬁchel (1973), page 954).

Therefore the assumptions of Proposition 3.1.1 hold at 00 = (ao,ﬂo,ao,bo). Hence for

hp = (O‘n—ag,ﬂn—ﬁoyan—ao,bn—bo) we have
Ihnll2y = (an—ag)? + (Bn—Bp)% + (2n—2ag)? + (bn—bg)?
and the result follows.

Corollary 3.1.4. Let (Xp; n € N) be a sequence of i.i.d. stable random variables with

density f(a 0,1,0) and a € (0,1)U(1,2), i.e. X, are standard SaS random variables, and

let (ap,bp) and (a},, bp be two sequences in (—00,0)U(0,00) x (—00,00) with ap/ap— 1

and (bp—b})/aph— 0. Then

bn—bh)

a
(an¥n+bn) ~ (2pYn+bf) &  (Xn) ~ (3Xn+>07

& Z:o_:l( —E—%})? < oo and 230:1(%)2 < oo,

and

. a by — b
(anYn+bp) L (af¥n+by  ®  (Xn) L (3Yn+20220)

00 _lan|\2_ oo (bp—bhy2 _
o ¥ _1(1 ——) =00 or Y, ( ar ) = .
Proof: The equivalence of i) and ii) follows since the map (xp) — ((xn—bh)/ah) is

invertible. The equivalence of ii) and iii) follows from Corollary 3.1.1. (putting as

an bp—bph

parameters ap = a. Jp = O0.ag =1 and bO = 0, T g n = 1,2....) for
n n
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a € (0,1)U(1,2). O

The separation condition (3.1.4) for the case where all the parameters but
translation (a) are kept fixed in a stable probability density follows from the inequality
in Ibragimov and Has’minski (1981), Example 3, Page 57; and when 8=0 and « is fixed
it has been proved by Kanter (1975). Condition (3.1.4) is not known to be true for the
case where all the parameters vary jointly. Hence singularity does not follow for all
sequences hy = (ap, Bn, an, bn), n=1,2,... with Z —1 ”hn” k = oo (cf Proposition
3.1.1).

In the next proposition we explore the tail behavior of a stable distribution to show
that two infinite sequences of independent symmetric stable random variables with

different indexes of stability are singular.

Proposition 3.1.5 Let X=(Xp; n € N) and Y=(Yp; n € N) be two sequences of

independent (nondegenerate) symmetric stable random variables with indexes of

stability o and 3 respectively. If o # S then By and py are singular.

Proof: Assume a < (3. For each y € (0,2) let Z, denote a S%S r.v. with ||Z7H7 = 1.

Thus

P(Xn € B) = P(lXqpllaZa € B),

pn(B)
Mn(B) & P(Yy € B) = P(I[Yall4Z4 € B).

Since

a'P(|Zy] >a) — Cy
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(where C4 is a positive constant), given any ¢ > 0, there exist My ¢ such that for
."- :
N a> M%f,
) L
‘_
& 3
A Cy—c¢ Cy+e >
: L < P(1Z4] > a) < L
E- a a 4

- :
> 2
- F
& (see e.g. Feller (1966)). "
’ From now on fix € such that 0 < ¢ < min (Cg,, Cﬁ)'

'. >
{ Case 1. Assume 4
: i
9 A [ Xnlle -
: on = - 0, as n — 2o. .
B ¥l >

: '
3 : .‘
\

N Define : XN — XN by o
i ¢

‘ L
b ¥(x) = (¥n(2) = xa/lYnllg; n € N). -

y 4

L. >

. -

It follows that ¥ is an i.i.d. sequence of standard S3S r.v.’s under By and under By an v
X :~

N independent sequence of Sa$ r.v.’s with S
¢ %
-: 4 )
. ¥

H¥nlla = Hxn”a/”Yn”g = 0On- "

: ;Z:
As before let dy denote the total variation distance between probability measures. _:

Y For a > max (M, M supp o) we have ;

» ‘J-

2 :,»

\ . ":r
3 dy Q¥ L un ¥ h) 2 P25 > a) = (JonZal > 2) o

‘ ~

b, 27

b

! cﬁ_f a Co+e :

> 3 — on a -

; a & D,

\':'
| J \-“

‘s, .‘

.
1
4
I.‘
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Thus

1 1 Cﬁ—N
liminf dy (Ap¥p °, gn¥ g ) > —S5— > 0.
n—oo a.ﬂ

Since dy (-, - ) < 2 d (-, - ) where d denotes the Hellinger distance (see e.g. Strasser

P

¥
.

! {1985)) we have

—
(1
LI ¢

T

“l

To0 L d (¥t ) = o

n

and therefore by Kakutani’s Theorem (see Page 47) ,uX\Il_l 1 pY\Il—l, which implies

px L opy
Case 2. Assume o 0. Thus there exist 6 > 0 and a sequence (ns k € N) such that (:
Ty > 6, i.e. a{kl < s~ L. "'\-

N IS
TR

Define ®: XV — xN by

-

v o,
o LN l'.".,..
2 a2

®(2) = (24 (2) = x /IXn lla; k € N).

yad

iy
o e,

Thus ¢ is an i.i.d. sequence of standard SaS r.v.’s under Bx and under gy, an

independent sequence of S3S r.v.’s with

*
19l = 1Ya, g/ 1Xn o = o). A
:

A

A
[

For a > max (M,é_lM) > max {M, o,'\'klM) we have

e, e

dv(m @ LA oY) 2 P((Zal > a) = Pllon ! 2] > a)

ST

- g

it
-

Y
I T e
e T N T T I
Py e o PO A N A N




CH+€
8

a

— 51 2 §i(a).

Since a < 3, we have 6/a) > 0 if and only if a> % > 6“1(cﬁ+c)/(ca-<). Thus.
1/(B—a)

fixing a > max {M, 6_1M, [M(Cﬂ + €)/(Cq — €)] } we obtain
limsup de(pn®n L, @7 l) > 6(a) > 0
and the conclusion follows as in case 1.
Remark: If =2, Proposition 3.1.5 remains true with minor modifications in its proof.

3.2. Remarks on singularity and absolute continuity o_fp_th-order and SaS processes

A necessary condition for equivalence of two Gaussian processes is the setwise
equality of their RKHS (or the equivalence of their RKHS norms). We show that this
result remains true for Sa$S processes with the function space F replacing the RKHS’s.

h order processes with 1 < p < 2, a necessary condition ifor abolute

Further for pt
continuity and a sufficient condition for singularity are presented analogous to those of
Fortet {1973) for second order processes.

Let Xi = (Xi(t); t € T),i = 1,2, be two pth order processes. We say that Xy

dominates X, if there exists 0 < K < oo such that for all N € N, aj,.ay € N and

by ty e T,

Hz;j‘:lanxg(tn>||[/p(,)) < KT o X Callly(py:

Proposition 3.2.1. Let Fi = !F(X-l), i
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1) If Xl dominates Xo, then FQ C Fy.

1) Xy dominates X, if and only if there exists a bounded linear transformation
O: L(X|) — L(Xy), satisfying O(Xl(t)) = Xg(t). t € T. Consequently, if X,
dominates X, and vice verse, then F1 = FQ (setwise), [{-HFl and H'HFQ are equivalent,

and the transformation © has bounded invense.

Proof. i) Suppose X1 dominates X,. Then for all functions s,

L IZ0 ans(ta)l . TR janstia)l
R ISps 2nXsCtally py IR 20 Xoltn)llp (py

and by taking supremum over N, Apsenans tl"“’tN’

g lsllg < sl

Thus if s € Fy, it follows that s € F, which proves ij.

i) Let ©:4(X)—£(Xq) be defined by

N N
O(anlanxl(tn)) = Zn:lanxg(trﬁ-
[t is clear that © is a well defined bounded linear transformation and as such it can be

extended to £(X,) if and only if X; dominates X,.

For Sas processes. the next Proposition shows that mutual domination is a
necessary condition for absolute continuity. i.e. non domination is a sufficient condition
for singularity. This Proposition is a stochastic process version of Proposition 7 in Zinn

(1975).
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.;: Proposition 3.2.2. Let X-l = (Xi(t); t € T),i = 1,2, be two SaS processes. If #‘(1 and
H 4

oy yX‘) are not singular, then Xl dominates X2, XQ dominates Xl’ and Fl = FQ.
::-1‘. Equivalently if F; # Fy then either X, does not dominate X, or Xq does not dominate

i Xy and ﬂxl 1 #X.z'

LR

Proof: Since ”'”LP(P) = Cp’ai”.”ai’ X, dominates X, if and only if

". ,. ".

R
PAPIP

”):II:IZIa.nXQ(tn)HaQ < Kllzgzlanxl(tn)ual,

o
,.:::. Assume X, does not dominate Xg. Then for any positive sequence K, — o0, as
I“-l
) n — oo, there exist ‘
K-,
(i) _ «N
‘.‘_ - Nn . « — }
:-_ Y, = Zk_—_1an,kxl(tn,k)’ 1= 1.2,.. )
:-' such that .3
8
; (2) (1)
oo Yq ||a;) > Kp [[Yn ”alv n=12,..
L - .
WS
o .
3 :
o . : (2) .
o Without loss of generality we can assume ||Yp ||o[2 = 1 for all n. Thus
BN .
2 '
.{'\ (1) -
X Y0 llay < g =0 as n — x. :
i ‘
R .
oK Now consider the sequence of random variables (Y: n € N) defined on (XT. C) by
L/ .
-"'.. »
::r N T -
. — n .
X Yn(2) = Yl g oty ) TE€XT
s b
- It follows that :
.. R
- ;
: (%1, %1 .
‘rxT exp (iuYp) d#xl = exp(=[I¥n o [uf ) —1 :
A g
4 4
ol
- <
-')"/ oL T R i S P At T L o o L o o A ol R R A R S P T . L P o S e LA R - .-'_‘
= S L A A e O A R Y AR RS S S e R A R
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i o~
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N
'
as n — oc. Hence a subsequence (Ynk; k € N) can be chosen such that if ;
! >
- Cy = {=m Ynk(r) — 0,as k — oo}, then pXI(CO) = 1. Clearly CO is a measurable ':
]
linear subspace of XT and, since px2 is a SQQS measure on (XT,C), it follows by the ;:-
tu
zero-one law for stable measures (Dudley and Kanter (1974)) that #o(Cp) = 0 or 1. 5

) On the other hand, :'_..

3 . (44 o « ,

| J v exp(iuYn,) duy = exp(=IYn, lla3 lul %) = exp (=lu] ?) <

: =
} \

] which implies that 4o(Cgy) = 0 and thus ,uxl L IJXQ' O }.:_

by a

K :,1

2
¢ The crucial result used in the proof of Proposition 3.2.2 is the zero-one law. This .:
"y ;"

y result is not available for general pth order processes but the proposition has some -

X
partial analogs for certain pth order processes. s

3 As in Fortet (1973) we call a pth order process X = (X(t); t € T) non-reduced if '::

5 there exists some ¢ € (0,1] such that for all countable subsets Tgof T, _:;

~.-I'
o
P({w:; x(tw) =0, t € TO}) > ¢ ; otherwise X is called reduced. Nontrivial SaS Y

d L

N processes are reduced. When X is separable and T an interval of the real line Fortet :::

- s

P .

. (1973) showed that X is reduced if and only if P({X(t) = 0,t € T}) = 0 and :,

" o

' nonreduced if and only if P(X(t) = 0.t € T) > ¢ for some ¢ € (0,1). W

)

: Next we generalize to pth processes with 1 < p < 2 the results in Fortet (1973), :_
Théoremes (3.2) and (3.3.2). The proof is identical to Fortet’s and is presented in a :
shorter form. -

. D

, Proposition 3.2.3. Let Xi = (Xi(t); t € T).i = 1.2, be pth order processes with
‘ I <p<2andF; =F(X)

i If ;LXQ 'l [Lxl then lFlﬂF(: is dense in F‘Z'




S i) If either X, or X, is reduced, and F;NF, = {0}, then ﬂxl L ”XQ'

~ Proof. i) Fix s € IF2. By Proposition 2.1.2 we have ]

x

1>

_1 <p-—
<P >>=fXTr<t)a(x) P px,(42)

A, s(t) = E(X5(t)Y

P
1f0%a

2

where Y € I.(X:,) and a(z) is a representation of Y in Lp(pxl)~§f>{z(t); te T} C XW,

L) "‘ i,.

Y(w) = a(X(-,w)). Let

-

:P: #x2(E) = ngd#xl + l‘xQ(EnN)

»
(4
x
.

be the Lebesgue decomposition of Bx with respect to py . Define
2 -1

.l
FRrSras
-

Pl

Ep = {z: 0 < g(z) < n}NNC® and "

™
7’

.

”ﬁ?{

< p—1>

sn(t) = IXT z(t) a(x) IEn(I) #XQ(dI)

5 2

l.L,‘- L.

(g, () ux (d9) ;

Id

-

I r 0 a@ =P

LT
2 ]
»

W T ta
"

<p—1> <p—1i> .

Since a 17',1 € Lp*(,uxr)) and 2 <P glEn € Lp*(yxl) we have s; € [FlnF‘Z'

Also

%
a

<p-—-1>

HANS

Izl\ 16k (s=sn) (bl = |fx1er 1 c 2t )alr) lElcl(I)ﬂx‘z(dr)l -

W

l/p K

<p-1>
P |p lEcdl‘\ ] N

P

K 1/
U ST CRIL TR : Urle

-

s

Thus

ISR

.................
-----------------------
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* *
p <p—-1>p P
ls—snllp_ < [ocla [V dux = [ lal"gduy  — O
Fa = "B 2 {g>n} 1
as n — x, lLe. FIOFQ is dense in F2’
i) For a fixed ty € T, let ao(r) = z(tq) and define
(0 <p—1>
SO0 = [ pattrag® P 7y (4n).
X 2
o (0) .
By Proposition 2.1.2., s € F2, since ao(z) € Lp*(l‘x2)~ Let
(0 <p—1>
w6 = Jpavsg(e P g (@ug, (42)
<p—~1>
= [ 150~ Te@)lg, (dux (43)
so that s&o) € F NFqy. Since Fink, = {0}, sglo)EO, le. sglo)(t) =0forallt e T. In
particular
0)
351 (tg) = f [x(to)ipg(r)px (dz) =0 forn = 1,2,...,
{0<g<n} 1
and hence
I e Pe(@)ug (dz) = 0.
{0<g<oo} 1
Consequently. since ty € T is arbitrary, we have z(t) = 0 a.e. (pxl) on {0 < g < x}
for each t € T. But this implies that Xl is non-reduced if
#xl({r;r(t) =0t €T} 2 #xl({r: 0 < g(z) < oc}).
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On the other hand if pxl({x; 0 < g(z) < o0}) > 0 then z(t) = 0 a.e. (gﬂxl) for each
t and J gd,uxl > 0. Hence

[0<g<oo]

[0<g<oo] 1

i.e. X, is nonreduced. Since either X or X, is reduced we must have

l‘xl({r; 0 < g(z) < o0}) =0, i.e. pxl 1 Y,

3.3 Dichotomies for certain SaS processes

In the study of Lebesgue decomposition of probability measures in infinite
dimensional spaces the following dichotomy "two measures are either mutually
absolutely continuous or singular”, has been proved for product measures (Kakutani
(1948)), for Gaussian measures (Feldman (1958) and Hajek (1958)), certain ergodic
measures (Kanter (1977)), etc. In Section 2, Chapter I we showed that this dichotomy
prevails for admissible translates of certain SaS processes. A dichotomy for general SaS
measures has been conjectured by Chatterji and Ramaswamy (1982) but the problem
seems to remain open.

In this section we show that a dichotomy holds for certain SaS processes, e.g.
independently scattered SaS random measures and harmonizable SaS processes.
Necessary and sufficient conditions for equivalence and singularity are given and hold for
all @ € (0,2).

We continue to use the notation introduced in Section 2, Chapter II. Through this
section we make the assumption that the control measures are not purely atomic with a
finite number of atoms. This is equivalent to the infinite dimensionality of the linear
space of the processes. When they are finite dimensional we always have equivalence

since stable densities are everywhere positive. We start by proving a dichotomy for

B e Se Y
LA

.\.\"I *
AN A
B U

b‘l';l »

WA

LN

| 3 2 ]
Pl

Dl

x
.

... e
Pl ".f'f gf‘f O

-~

v o q.;:;r’xf-'

NUNENEN

sy oa
e
PR
"4’)-’

(R A

1 /s

Ay Ay

'@ AT @ LS
1 ',.‘:. 5 1‘, <".~‘ r‘s \~‘n~l‘- 5}‘-/"

'.l. '.l".'.

« a5 0 n
«
Sl e

-

i Yt
o

Ay
27,0

L]

I3 -

e




g

x

3

-

-

.

s = W
2
-

Y
II..

67

independentiy scattered symmetric stable random measures.

Proposition 3.3.1. For i=1,2, let Z-l = (Zi(B); B € 3) be an independently scattered
symmetric stable random measure with index of stability o € (0,2) and control measure

m, which is not purely discrete with a finite number of atoms. Then By and by  are
1 2

) RS O )

Il
13
o,

mutually absolute continuous if and only if the following conditions are satisfied

i) a) = ay = @,

M YA

Cp 3 e

i) my g =my gy,

iii) my and m, have the same set of atoms A = {ap; n € N} and

€
’g.' Ay .
K X SR

¥
i

1/a. 9

oo
Enzl{l - [ml({an})/mQ ({an})] } -
P
N
Furthermore if any of these conditions fail, b7 and “ZQ are singular. e
1 e
o
®.
(Note that condition iii) is symmetric in my and m, and independent of a as o
2 Vo
2 . . q,2 )
S"a(l — xp)® < oo ifand only if 3 (1 — xp)° < o). "
®
rﬂ
Proof. First suppose that my and m, are not equivalent, e.g. mo & m;. Then there R
f:‘n
exists B € o(9) such that -~
oSy
An
[ ]
a ag o
1Zy(B)lla} = my(B) = 0, and [iZy(B)lla2 = my(B) > 0 s
S
-‘:.\>
It follows that Z does not dominate 22 and by Proposition 3.2.2 we have singularity. .
oA
From now on we assume m, ~ m,. -
1 2 .'.\
Suppose oy #F ag. Since my and m., are not purely atomic with a finite number of :‘:n,
2 “ Y
. . )
atoms, we can choose an infinite sequence (Bp; n € N) of disjoint sets in J such that :."‘
—
m,(By) > 0,i=1.2. Define ¥: X — XN by ey
\f\
~."
)
.
4
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o
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¥(z) = (¥n(z)=2(Bpn); n€ N).

"i Thus, for i=1,2, under By, ¥ is a sequence of independent SaiS random variables !
i

Q-
with ”‘I’n“a; = mi(Bn). It follows from Proposition 3.1.5 that if &y # ag, then

: .'; pzi\ll—l L yz2\ll_1, so that #Zl 1 "22' From now on we assume a; = ag = a.
Eh
'\:. Si -~ h ~ . t
- ince m; ~ mg we have my 4~ Mo g Suppose m; 4 # mg 4, S0 tha
'J
A !
) : hence :
& :
-'! '
. mi’d({O < dm2,d/dm1,d <1}) > 0or mi,d({ded/dml,d > 1}) > 0.
o N
) -
3 1
f'_: Assume mi,d({de,d/dml,d > 11}) > 0. Then there exists § > 1 such that E
o
b mi,d({de,d/dml,d > 6}) > 0. Since m; 4 is nonatomic, we can find a sequence
:: (Bp; n € N) of disjoint subsets of {dmi,d/dml,d > 6} such that ml,d(B“) > 0. Let i
-~ -
o5 3 N -
: ®: X° — X7 be the map defined by B
o 1/a 5
'_\_": ®(z) = (Pp(z) = z(AcﬂBn)/ml‘d(Bn) ;n € N). :
::: Ny
-~ z
> =3
Y
Under uzl. & is an i.i.d. sequence of standard SaS r.v.'s, and under “ZQ‘ ® is an o
3 S
o independent sequence of Sa$ r.v.’s with 3
* W
& 3
Ny
lenlla = m2_d(Bn)/m1’d(Bn)- _.
b 2
‘ 5
-.I .h
;. It follows from Corollary 3.1.4 and Kanter (1975) that By v~ and ;422‘:_'1 are eityor .
g 1 ‘A
.,
- equivalent or singular, and they are singular if and only if ’
N 3
5 "o
%3 '.:‘
" ,
» N "
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PR T

(3831) T2 (1 - (mg 4(Bn)/my 4(Ba))/ 12 =

AR IR
A

-n

el
g

Now by construction

Y Tx tr

[ 4 ."l

dm2 d

m2’d(Bn) = an (m—l’—d dml’d > 6 ml,d(Bn)

; ‘-l

Rh e

Hence 1 < § < my 4(Bn)/m) 4(Bn), o that (3.3.1) holds. Thus pZIE—l L ngz—l

-
L

which implies “Zl 1 By -
i

.". -w 5’)":

If mi,d({de,d/dml,d > 1}) = 0 we have mi,d({dml,:‘/de,d > 1}) > 0 and an

.

0\
identical argument applies. Therefore m; ~ mg and m; 4 # Mg 4 implies pzl L R ;:
"
Now assume m; 4 = My 4. Since m; ~ my, they have the same set of atoms N
A h .
A = {ap; n € N}. Suppose pZ2 < uzl and let =: X? — XN be defined by "
hey
RS
- - /e o
Z(z) = (Zn(2) = ({an})/m ({an}) " sn €N). Yy
!
-
Thus “ZQE_I < “le—l and Z is an i.i.d. sequence of standard SaS r.v.'s under #Zl ;j :
and under p22 an independent sequence of Sa$ r.v.’s with Y
D
Z1s = mQ({an})/ml({an}). Hence by Corollary 3.1.4 and Kanter (1975), '
X
N
20 1/a -]
(3.3.2) Zn:l[l - (my({an})/m; ({an})) " ] < 0. S
)
Also, if (3.3.2) does not hold, again Corollary 3.1.4 and Kanter (1975) imply
By = Lopy = so that by L opy . v
‘1 2 1 2 )
Conversely, suppose that i), ii) and iii) hold. Since my 4 = My 4 we have ".
2,272, +24 i=12, ™
’
o

hY

L et I PR PR I S PV B I PR Ao ol 2N Y TR R JORE S o LS L S SN S N s . .
AP A AN A IR AP A oL L, - NS W A A s . 0" x " n e e W
P S St e Tl N L e T LI A {‘f(’/’.(‘"f' W IR A IR il e e AL )
” o, o'y P o s Ll L a LA a a0 L) *w N LS T TR I Tl T g
T N N N s O NN S R N N R e e -\'J' N N R A N A NI N AT




Mo it it s T aT Al sk

L Sl Sl " €'Y

70

where Z-l a and Zd are independent, independently scattered SaS random measures with

control measures m; o and my =my 4 =mg, respectively. Let &: XN — x3 be

defined by

[#(1))(B) = @(1.B) = T2 1p(an)m;({an D) “yn. v = (vn) € XN.

Thus {®cZ)(Z;) L Z; ,»s0 that puy, = (#g E—l)‘b—l , i=1,2. Now by Corollary
K i,a i

3.1.4, iii) implies u ==l u E_l, hence u ~ p . Therefore, since
Zy Zy Z1a "Z9a

By = U * po ,1=1,2, it follows that p, ~ pu, . g .
4 T Tia Ty 2y T
Remark: It also follows from the proof of Proposition 3.3.1 that if only one of the

control measures has a finite number of atoms and are singular. d
#Xl l‘x2 g

As in the case of admissible translates the results on equivalence and singularity of
independently scattered SaS random measures can be extended to certain invertible SaS
- processes.

Let X, = (X,(t); t € T), i=1,2, be two invertible SaS processes with spectral

'
-\ representations Xi(t) - f'{'(t,u) Zi(du) and control measures m; where
-._;
b’ fe Lal(ml) n LQQ(mQ) and the independently scattered random measures have the -4
-l. i
‘ same é-ring 3 of subsets of | as parameter space, i.e., my and my have the same sets of
1 . finite measure. X1 and X, will be said to be simultaneously invertible if for each B € 3 X
::; there exist Ny (B), an,l(B)‘ e an.Nn(B)(B)’ tn,l(B)’ tn,Nn(B)(B) such that ]
< No(B }-
- yianl )an’k(B) f(ty ((B), ) — 1g() asn — . :
AN '
'\. "
:5 ‘4
. in L(,.(mi) for both i=1,2. E.g., X and X, are simultaneously invertible if they are '
i 2
'j invertible, ay; = ay and dml/dm{) is bounded above or below. In particular X; and X, \
) :
w N,
L] ~
- \-

L5495
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b are simultaneous invertible if they are invertible and their associated random measures ’r_:
) Ry
Z1 and ZQ are equivalent, as Hy o~ u22 implies ap =ag, My =my 4 and ;
; 1/a\2 e
xX0 & -
22 (1=(dmy /dmy(an)) "7 < =0 >
“al
The simultaneous invertibility of X| and X, allows for the study of the Lebesgue :'_'-.
»
decomposition of Bx with respect to Bx in terms of the decomposition of By, with 2=
1 2 1
respect to Hz, - Indeed Xi(t)sz(t,u) Zi(du) is roughly speaking X; =L(Zi)’ where L is .::
2 -~
a linear map from &(Z) into £(X), so we expect the singularity of X; and X, to imply :::'
2 e
the singularity of Z1 and ZQ, and conversely the equivalence of Zl and Z, to imply the "{ 3
L
equivalence of X{ and X2. Simulatenous invertibility is like having ZizL—l(Xi), SO we :,‘u
should have the singularity of Z; and Z, implying the singularity of X, and X,, and .
. . . ‘-}
conversely the equivalence of Xy and X2 implying that of Z1 and Zy. Hence with both ;
'~’\
we expect to have the above implications in both directions. The next proposition Y
W
o
e
makes this precise. >
)"\
S
.

Proposition 3.3.2. Let X, = (Xi(t); t € T) be two simultaneously invertible Sa;3

‘e 2
.
)
.

processes with spectral representations Yi(t) = f! f(t,u) Zi(du) and control measures m,

 Cr

.

which are not purely discrete with a finite number of atoms., Then Hx and py are
g *2

Ao

either equivalent or singular, and ;‘:
o

o

1) Bx ™~ oBY A A L A 1, SR o

A1 2 1 2 N

»

i) uy Lop S py Lops o, ~

X7 Xy Zy = "Ly L.

ie. #xl ~ BX, if and only if conditions i), i) and iii) of Proposition 3.3.1 are satisfied.

.
'
'

and pxl L “XQ if and only if at least one of these conditions fail.

e T
PN

(81

Proof: As in Proposition 2.2.3 for B € 3 we can define

2

Pl

év

03

on(B.2) = £ (Pla | (B)att, (), zeXT,

so that
.
.
"”'.I LA S .« v - -, - -, 7 & w
O L e
A N e WA AR,
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®n(B.X, (- w)) — Z,(Bw), i=12,

in probability as n — oo. Let (an(B,-); k € N) be a subsequence converging a.e.
(F‘x.)’ i=1,2, and put
i

2(B) = 2(B,) = kﬂlgg an(B’ .)1{1:; ‘Pnk(r) converges}(') :

Z(B, Xi(-, w)) = Zi(B,w) a.s., 1=1,2.

The stochastic process Z=(Z(B), B € 9) defined on (XT,C) is an independently scattered
SaS random measure with control measure m; under puy, and m, under puy . If we
1 Xy 2 Xo

also denote by Z the map z — Z(-, z) then

~Bx, P Ex 271

| .
~ Z i.e. ~
1 HXq (e nz, ~ bz,

#xl

. 5—1 5 —1
#Zl L u22 (i.e. ule L “XQZ )y = ,uxl L ”X‘)'

On the other hand if pzl ~ #ZQ’ ie. pxli_l ~ “ng_l‘ it follows that i), ii)

and iii) of Proposition 3.3.1 hold. Thus, we can construct independent processes Xd and
<., on (X3, e(X%). 4y ) such that
i

1,a

i=1,2,

with p_ ~ ps . Since py = pg  * pg we have u ~ fy -
X1.:3. X?,a Xl xd Xi a Xl XQ
Now if u and u are not equivalent it follows that u 1 p- (since otherwise

uZl ~ ;122, which implies “Xl ~ ”Xg‘ i.e. a contradiction) and this was shown to

imply uxl 1 “Xf)'
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It follows from Proposition 3.3.2 that simultaneously invertible processes are ._"’
\/
_ singular whenever their indexes of stability are different. This is not generally true for ‘-4
) P
) 2
X symmetric stable processes with differert indexes of stability. Indeed, let :j
x -
b G = (G(t); t € T) be a Gaussian processes, and for i=1,2, A, a standard positive ol
K (ai/‘Z)-stable random variable with a; # ag, and consider the sub-Gaussian Sa;S -
Y
Y o
- prccesses N,
(- -
- o
)
X 1/2 '
. X, = (X{(t) = AT 7G(t); 6 € T). \
. N
_: We have that \
-l h
W ~)
ﬂx_(B) = fR+I‘xG(B) uA_(dx). ;- !
i i
; N
- o
- Since the distribution Ba of A, has positive density in R° we have B ~ Hp 2SO that :\
R i P 1 4 2 ."
by the Corollary of Theorem 18.1 in Skorohod (1974}, #Xl ~ By, Since the linear ~
’ 2 )
- space of sub-Gaussian processes does not contain (nondegenerate) independent random :::
- N
3 variables, sub-Gaussian processes are not invertible {(nor simultaneously invertible). :'
- \.
Further examples of symmetric stable processes with different indexes of stability which N
)
. are equivalent are '
N L 1/2 _
S L
- )
" ~
. where for each i=1,2, the vector (Ai 1o e A; N) is positive (ai/‘2)~stable, independent of
" the mutually independent Gaussian processes G, =(Gp(t); t € T), n=1,....N. Y
o )
; 3
’ .
{ Next Proposition 3.3.2 is applied to describe the Lebesgue decomposition between .

two SaS harmonizable processes, and to show that muliples of invertible processes are

A singular. ~
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Corollary 3.3.3. Let X, = (Xi(t); t € T) be two harmonizable Sa;S processes, i.e.

X;(t) = [yexp(i<t, u>)Z(du), te€T,

where § = RY and [—m, 7r}d for T = R4 and 24 respectively, with spectral measures m,
not purely discrete with a finite number of atoms, i=1,2. Then ,uxl and ‘“X2 are
equivalent if and only if

i) ap=ay = a

it) myq = Mog>

ili) m; and my have the same atoms {aj; n € N} with
ey 2
Zn:1[1“m1({an})/m2({3n})] < o0,
and they are singular otherwise.

Proof: Clearly X1 and X, are simulatenously invertible, since indicator functions can be

approximated uniformly by linear combinations of the functions f(t.u) = exp(i<t.u>).

He.ice the result follows from Proposition 3.3.2. o

Corollary 3.3.4. Let X=(X(t); t € T) be an invertible SaS process with control measure
m which is not purely atomic with a finite number of atoms. Then gy and Hpy are

singular wherever |b] # 1.

Proof. If X(t) = fnf(t,u) Z(du), where Z has control measure m. then

(bX)(t) = bX(t) = [bf(t.) Z(du) = ff(t.u)Zb(du)
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* where 7, has control measure [b|*m. Cleary X and bX are simultaneously invertible -
’,
k. and since m is not purely atomic with a finite number of atoms, the result follows from K
L
| Proposition 3.3.2. a =
3 -
" o
- The result in Corollary 3.3.4 is known to hold for every Gaussian processes with
»
; infinite dimensional linear space. Here again the class of SaS sub-Gaussian processes
provides an example to show that the result is not true for all infinite dimensional Sa$S
: processes. In fact, if G=(G(t): t € T) is Gaussian, A is a standard positive (a/2)-stable
¥ L]
15 . . 1/2 . . -
N random variable and X(t) = (A ' G(t),t € T), reasoning as in page 73 we have for
K~
N
each b > 0,
.
-, _
n lle(B) = f[R*‘uxG(B) lle(dx)-
o
; )
- e . . . . v
~ . (e
fa ['he distributions HA and By A are equivalent for all b > 0 so that By Hpx - R
) ‘_::
» ,_-:
)
e
‘g
9
v
'
'
K <
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